Charting the academic output on cyanobacterial exopolysaccharides and their industrial applications

Authors

  • Maricel BOCANEALA Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, “Babeş-Bolyai” University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania; National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat St., 400293 Cluj-Napoca, Romania. ✉Corresponding author, E-mail: maricel.bocaneala@ubbcluj.ro https://orcid.org/0000-0003-2923-0320
  • Giovani M. GORON Department of Public Health, College of Political, Administrative and Communication Sciences, Babes-Bolyai University, 71 General Traian Mosoiu St., 400132 Cluj-Napoca, Romania https://orcid.org/0009-0003-5099-5552
  • Elena RAKOSY-TICAN Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, “Babeş-Bolyai” University, 5-7 Clinicilor St., 400006 Cluj-Napoca, Romania https://orcid.org/0000-0002-0982-8547

DOI:

https://doi.org/10.24193/subbbiol.2025.1.02

Keywords:

bibliometric analysis, cyanobacterial EPS, exopolysaccharide, technological transfer

Abstract

Cyanobacterial exopolysaccharides (EPS) are diverse biopolymers with significant ecological roles and growing industrial potential due to their biocompatibility, biodegradability, and functional versatility. This study presents a bibliometric and patent analysis of cyanobacterial EPS research between 2004 and 2023, exploring academic and industrial advancements. The bibliometric analysis of 1,022 articles identified pharmaceuticals and environmental applications as dominant research themes, while the food, agriculture, and energy sectors showed emerging interest. A manually curated subset of 79 articles focusing on industrial applications highlighted EPS’s potential in pollutant removal, drug development, and biofertilization. Patent analysis, with data from 618 entries, revealed a surge in filings post-2014, predominantly in the USA, reflecting growing industrial interest. While healthcare and environmental sectors lead in EPS applications, translational gaps between academic research and industrial adoption persist, particularly in underdeveloped domains. This study presents the multidisciplinary appeal of cyanobacterial EPS, striving to offer insights into future research directions and their potential for sustainable innovation across diverse sectors.

Article history: Received 4 February 2025; Revised 17 March 2025;
Accepted 17 March 2025; Available online 25 June 2025

References

Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 11(4), 959–975. https://doi.org/10.1016/j.joi.2017.08.007

Bhatnagar, M., Parwani, L., Sharma, V., Ganguly, J., & Bhatnagar, A. (2014). Exopolymers from Tolypothrix tenuis and three Anabaena sp. (Cyanobacteriaceae) as novel blood clotting agents for wound management. Carbohyd. Polym. 99, 692–699. https://doi.org/10.1016/j.carbpol.2013.09.005

Borowitzka, M. A. (2013). High-value products from microalgae—their development and commercialisation. J. Appl. Phycol. 25(3), 743–756. https://doi.org/10.1007/s10811-013-9983-9

Cao, X., & Zhang, Y. (2023). Environmental regulation, foreign investment, and green innovation: A case study from China. Environ. Sci. Pollut. R. 30(3), 7218–7235. https://doi.org/10.1007/s11356-022-22722-5.

Center for Strategic and International Studies (2021). China power project: Is China catching up to the United States in research and development (R&D) [Accessed 27 December 2024] https://chinapower.csis.org/china-research-and-development-rnd/

Colica, G., Mecarozzi, P. C., & De Philippis, R. (2010). Treatment of Cr(VI)-containing wastewaters with exopolysaccharide-producing cyanobacteria in pilot flow through and batch systems. Appl. Microbiol. Biot. 87(5), 1953–1961. https://doi.org/10.1007/s00253-010-2665-5

Cruz, D., Vasconcelos, V., Pierre, G., Michaud, P., & Delattre, C. (2020). Exopolysaccharides from cyanobacteria: strategies for bioprocess development. Appl. Sci. 10(11), Article 11. https://doi.org/10.3390/app10113763

Debnath, S., Muthuraj, M., Bandyopadhyay, T. K., Bobby, Md. N., Vanitha, K., Tiwari, O. N., & Bhunia, B. (2024). Engineering strategies and applications of cyanobacterial exopolysaccharides: A review on past achievements and recent perspectives. Carbohyd. Polym., 328, 121686. https://doi.org/10.1016/j.carbpol.2023.121686

European Patent Office. (n.d.). Espacenet patent search. Retrieved November 2, 2024, from https://worldwide.espacenet.com/

Falsini, S., Rosi, M. C., Ravegnini, E., Schiff, S., Gonnelli, C., Papini, A., Adessi, A., Urciuoli, S., & Ristori, S. (2023). Nanoformulations with exopolysaccharides from cyanobacteria: Enhancing the efficacy of bioactive molecules in the Mediterranean fruit fly control. Environ. Sci. Pollut. R. 30(35), 83760–83770. https://doi.org/10.1007/s11356-023-28180-x

Flores, C., Lima, R. T., Adessi, A., Sousa, A., Pereira, S. B., Granja, P. L., De Philippis, R., Soares, P., & Tamagnini, P. (2019). Characterization and antitumor activity of the extracellular carbohydrate polymer from the cyanobacterium Synechocystis ΔsigF mutant. Int. J. Biol. Macromol. 136, 1219–1227. https://doi.org/10.1016/j.ijbiomac.2019.06.152

Gacheva, G., Gigova, L., Ivanova, N., Iliev, I., Toshkova, R., Gardeva, E., Kussovski, V., & Najdenski, H. (2013). Suboptimal growth temperatures enhance the biological activity of cultured cyanobacterium Gloeocapsa sp. J. Appl. Phycol. 25(1), 183–194. https://doi.org/10.1007/s10811-012-9852-y

Hyo Gyeom Kim, Kyung Hwa Cho, & Recknagel, F. (2024). Bibliometric network analysis of scientific research on early warning signals for cyanobacterial blooms in lakes and rivers. Ecol. Inform. 102503–102503. https://doi.org/10.1016/j.ecoinf.2024.102503

Jindal, N., Pal Singh, D., & Singh Khattar, J. (2013). Optimization, characterization, and flow properties of exopolysaccharides produced by the cyanobacterium Lyngbya stagnina. J. Basic. Microb. 53(11), 902–912. https://doi.org/10.1002/jobm.201200201

Kumar, D., Kaštánek, P., & Adhikary, S. P. (2018). Exopolysaccharides from cyanobacteria and microalgae and their commercial application. Curr. Sci. 115(2), 234–241

Laroche, C. (2022). Exopolysaccharides from microalgae and cyanobacteria: diversity of strains, production strategies, and applications. Mar. Drugs 20(5). https://doi.org/10.3390/md20050336

Leite, J. P., Mota, R., Durão, J., Neves, S. C., Barrias, C. C., Tamagnini, P., & Gales, L. (2017). Cyanobacterium-derived extracellular carbohydrate polymer for the controlled delivery of functional proteins. Macromol. Biosci. 17(2), 1600206. https://doi.org/10.1002/mabi.201600206

Li, H., Li, Z., Xiong, S., Zhang, H., Li, N., Zhou, S., Liu, Y., & Huang, Z. (2011). Pilot-scale isolation of bioactive extracellular polymeric substances from cell-free media of mass microalgal cultures using tangential-flow ultrafiltration. Process Biochem. 46(5), 1104–1109. https://doi.org/10.1016/j.procbio.2011.01.028

Li, P., Harding, S. E., & Liu, Z. (2001). Cyanobacterial exopolysaccharides: their nature and potential biotechnological applications. Biotechnol. Genet. Eng. 18(1), 375–404. https://doi.org/10.1080/02648725.2001.10648020

Mohamed, Z. A., Elnour, R. O., Alamri, S., & Hashem, M. (2023). Increased production of extracellular polysaccharides in Arthrospira platensis as a protective response against saxitoxin: Implications to outdoor mass production. Algal Res. 74, 103184. https://doi.org/10.1016/j.algal.2023.103184

Mota, R., Flores, C., & Tamagnini, P. (2020). Cyanobacterial extracellular polymeric substances (EPS). In J. M. Oliveira, H. Radhouani, & R. L. Reis (ed.), Polysaccharides of Microbial Origin: Biomedical Applications (pp. 1–28). Springer International Publishing. https://doi.org/10.1007/978-3-030-35734-4_11-1

Mota, R., Rossi, F., Andrenelli, L., Pereira, S. B., De Philippis, R., & Tamagnini, P. (2016). Released polysaccharides (RPS) from Cyanothece sp. CCY 0110 as biosorbent for heavy metals bioremediation: Interactions between metals and RPS binding sites. Appl. Microbiol. Biot. 100(17), 7765–7775. https://doi.org/10.1007/s00253-016-7602-9

Mugani, R., Fatima El Khalloufi, El Mahdi Redouane, Haida, M., Roseline Prisca Aba, Yasser Essadki, El, S., Abdessamad Hejjaj, Naaila Ouazzani, Campos, A., Hans-Peter Grossart, Mandi, L., Vasconcelos, V., & Brahim Oudra. (2024). Unlocking the potential of bacterioplankton-mediated microcystin degradation and removal: A bibliometric analysis of sustainable water treatment strategies. Water Res. 255, 121497–121497. https://doi.org/10.1016/j.watres.2024.121497

Najdenski, H. M., Gigova, L. G., Iliev, I. I., Pilarski, P. S., Lukavský, J., Tsvetkova, I. V., Ninova, M. S., & Kussovski, V. K. (2013). Antibacterial and antifungal activities of selected microalgae and cyanobacteria. Int. J. Food Sci. Tech. 48(7), 1533–1540. https://doi.org/10.1111/ijfs.12122

Nath, P. C., Tiwari, O. N., Devi, I., Bandyopadhyay, T. K., & Bhunia, B. (2021). Biochemical and morphological fingerprints of isolated Anabaena sp.: A precious feedstock for food additives. Biomass Conversion and Biorefinery, 11(6), 2723–2733. https://doi.org/10.1007/s13399-020-00651-y

National Center for Science and Engineering Statistics. Survey of federal funds for research and development, volume 70, FYs 2020–21. National Science Foundation (2021). [Accessed 27 December 2024]. https://ncses.nsf.gov/surveys/federal-funds-research-development/2021#data.

Nishanth, S., Bharti, A., Gupta, H., Gupta, K., Gulia, U., & Prasanna, R. (2021). Chapter 14 - Cyanobacterial extracellular polymeric substances (EPS): Biosynthesis and their potential applications. In: S. Das & H. R. Dash (Eds.), Microbial and Natural Macromolecules,pp. 349–369. Academic Press. https://doi.org/10.1016/B978-0-12-820084-1.00015-6

Parikh, A., Madamwar, D., & Patel, H. (2006). Aerobic decolorization of textile dyes by a mixed bacterial consortium DMC. Bioresource Technol. 97(16), 2193–2198. https://doi.org/10.1016/j.biortech.2005.09.008

Potnis, A. A., Raghavan, P. S., & Rajaram, H. (2021). Overview on cyanobacterial exopolysaccharides and biofilms: Role in bioremediation. Rev. Environ. Sci. Bio. 20(3), 781–794. https://doi.org/10.1007/s11157-021-09586-w

Qi, Y., Chen, X., Hu, Z., Song, C., & Cui, Y.-L. (2019). Bibliometric analysis of algal-bacterial symbiosis in wastewater treatment. Int. J. Env. Res. Pub. He. 16(6), 1077–1077. https://doi.org/10.3390/ijerph16061077

Qu, F., Zhu, A., Ma, Y., Zhang, L., & Ding, Y. (2012). Anaerobic digestion of rice straw in a constructed wetland for biogas and biofertilizer production. Water Res. 46(8), 2670–2676. https://doi.org/10.1016/j.watres.2012.02.045

Ramachandran, L., Marappa, N., Sethumadhavan, K., & Nooruddin, T. (2020). Glycoprotein prompted plausible bactericidal and antibiofilm outturn of extracellular polymers from Nostoc microscopicum. Appl. Biochem. Biotech. 191(1), 284–298. https://doi.org/10.1007/s12010-019-03179-8

Reignier, O., Bormans, M., Marchand, L., Sinquin, C., Amzil, Z., Zykwinska, A., & Briand, E. (2023). Production and composition of extracellular polymeric substances by a unicellular strain and natural colonies of Microcystis: Impact of salinity and nutrient stress. Env. Microbiol. Rep. 15(6), 783–796. https://doi.org/10.1111/1758-2229.13200

Rodrigues, F., Mendonça, I., Faria, M., Gomes, R., Pinchetti, J. L. G., Ferreira, A., & Cordeiro, N. (2024). Response surface methodology applied to cyanobacterial eps production: steps and statistical validations. Processes 12(8), Article 8. https://doi.org/10.3390/pr12081733

Rossi, F., & De Philippis, R. (2015). Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats. Life 5(2), Article 2. https://doi.org/10.3390/life5021218

Ruangsomboon, S., Wongrat, L., Choochote, S., Ganmanee, M., & Saparnklang, A. (2013). Effects of low pH and Pb2+ stress on living cyanobacterium, Phormidium angustissimum West & G.S.West: A test of its feasibility as a living biosorbent. J. Appl. Phycol. 25(3), 905–911. https://doi.org/10.1007/s10811-013-0004-9

SankeyMATIC. (n.d.). Sankey diagram builder. [Accessed 2 November 2024] http://sankeymatic.com

Santos, C., Silva, C. J., Büttel, Z., Guimarães, R., Pereira, S. B., Tamagnini, P., & Zille, A. (2014). Preparation and characterization of polysaccharides/PVA blend nanofibrous membranes by electrospinning method. Carbohyd. Polym. 99, 584–592. https://doi.org/10.1016/j.carbpol.2013.09.008

Shen, S., Jia, S., Wu, Y., Yan, R., Lin, Y.-H., Zhao, D., & Han, P. (2018). Effect of culture conditions on the physicochemical properties and antioxidant activities of polysaccharides from Nostoc flagelliforme. Carbohyd. Polym. 198, 426–433. https://doi.org/10.1016/j.carbpol.2018.06.111

Van Camp, C., Fraikin, C., Claverie, E., Onderwater, R., & Wattiez, R. (2022). Capsular polysaccharides and exopolysaccharides from Gloeothece verrucosa under various nitrogen regimes and their potential plant defence stimulation activity. Algal Res. 64, 102680. https://doi.org/10.1016/j.algal.2022.102680

Vicente-García, V., Ríos-Leal, E., Calderón-Domínguez, G., Cañizares-Villanueva, R. O., & Olvera-Ramírez, R. (2004). Detection, isolation, and characterization of exopolysaccharide produced by a strain of Phormidium 94a isolated from an arid zone of Mexico. Biotechnol. Bioeng. 85(3), 306–310. https://doi.org/10.1002/bit.10912

Vinoth, M., Sivasankari, S., Ahamed, A. K. K., Alsamhary, K. I., Al-enazi, N. M., Abdel-Raouf, N., Alharbi, R. M., Govindarajan, R. K., Ravi, G., Alarjani, K. M., & Sholkamy, E. N. (2023). Bio-characterization and liquid chromatography–mass spectrometry analysis of exopolysaccharides in biofilm-producing cyanobacteria isolated from soil crust: exploring the potential of microalgal biomolecules. Biology 12(8). https://doi.org/10.3390/biology12081065

Ward, N. L., Challacombe, J. F., Janssen, P. H., Henrissat, B., Coutinho, P. M., Wu, M., ... & Kuske, C. R. (2009). Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils. Appl. Environ. Microb. 75(7), 2046–2056. https://doi.org/10.1128/aem.02294-08

Xiao, Z., & Kerr, W. A. (2022). Biotechnology in China – regulation, investment, and delayed commercialization. GM Crops Food 13(1), 86–96. https://doi.org/10.1080/21645698.2022.2068336

Yousaf, F., Bukhari, S. A. R., Shakir, H. A., Khan, M., Franco, M., & Irfan, M. (2024). Cyanobacterial exopolysaccharides: extraction, processing, and applications. In M. A. Mehmood, P. Verma, M. P. Shah, & M. J. Betenbaugh (Eds.), Pharmaceutical and Nutraceutical Potential of Cyanobacteria, pp. 277–309. Springer International Publishing. https://doi.org/10.1007/978-3-031-45523-0_11

Downloads

Published

2025-06-25

How to Cite

BOCANEALA, M., GORON, G. M., & RAKOSY-TICAN, E. (2025). Charting the academic output on cyanobacterial exopolysaccharides and their industrial applications. Studia Universitatis Babeș-Bolyai Biologia, 70(1), 19–47. https://doi.org/10.24193/subbbiol.2025.1.02

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.