EX VIVO EXPERIMENTAL AND SPECTROSCOPIC ANALYSIS OF URINARY STONE DISSOLUTION BY EL-MAATYA SPRING WATER: A MULTI-ANALYTICAL APPROACH
DOI:
https://doi.org/10.24193/subbchem.2025.4.09Keywords:
El-Maatya water, urolithiasis, dissolution, uric acid, calcium oxalateAbstract
ABSTRACT. El-Maatya spring water, sourced from Algeria, is locally esteemed for its therapeutic attributes and has undergone scientific scrutiny to evaluate its litholytic potential on urinary calculi. Thorough physicochemical and microbiological assessments were performed to analyze its composition and ensure its safety. The microbiological evaluation yielded excellent results, demonstrating an absence of coliforms, E. coli, and streptococci, thereby affirming the water's sanitary integrity. Spectroscopic techniques, including UV and FTIR, were employed to ascertain the composition of the urinary stones, primarily consisting of calcium oxalate and uric acid. Ex vivo dissolution experiments indicated a markedly elevated rate of mass loss in uric acid stones when compared to calcium oxalate stones, which exhibited negligible solubility—underscoring the selective efficacy of the water. Microscopic examinations revealed significant morphological changes in the structure of the calculi following exposure. Finally, a survey involving 241 participants corroborated the favorable perception of El-Maatya water regarding urinary health, thereby reinforcing its traditional utilization.
References
1. R. W. Schrier; The patient with kidney stones. In: Schrier RW (ed) Manual of Nephrology, 7th ed.; Lippincott Williams & Wilkins, Philadelphia, 2009, pp. 83–103
2. R. Manglik; Kidney stones. In: EduGorilla Prep Experts (ed) Neuroendocrinology; EduGorilla Publication, 2024, pp 1333–1335
3. W. Khitri; N. Lachgueur; A. Tasfaout; A. Lardjam; A. Khalfa; Rev. Ethnoécologie, 2016, 9.
4. A. L. O’Kell; D. C. Grant; S. R. Khan ; Urolithiasis, 2017, 45(4), 329–336.
5. S. Ahmed; M. M. Hasan; H. Khan; Z. A. Mahmood; S. Patel; Biomed. Pharmacother., 2018, 107, 272–281.
6. L. Irsay; E. Bordinc; M. Borda; R. Ungur; V. Ciortea; I. Onac; Balneo Res. J., 2014, 5(1), 37-43
7. S. Doizi, J. Letendre, K. Bensalah, O. Traxer; Prog. Urol., 2013, 23(16), 1312–1317.
8. K. Bishop; T. Momah; J. Ricks; Prim. Care, 2020, 47(4), 661–671.
9. R. Terkeltaub; Clinical features of gout. In: Terkeltaub R (ed) Gout and Other Crystal Arthropathies. Elsevier, Philadelphia, 2011, pp. 110–119.
10. N. Ennaghra; Z. E. Boudjellab; Afr. J. Biol. Sci., 2024, 6(16), 1783–1795.
11. F. Di Silverio; A. R. D’Angelo; Arch. Ital. Urol. Androl., 1994, 66(5), 253–258.
12. A. Bertaccini; M. Borghesi ; Arch. Ital. Urol. Androl., 2009, 81(3), 192–194.
13. Y. F. Lobanov; A. Y. Zharikov; Y. F. Zverev; L. A. Strozenko; A. S. Kalnitsky; N. M. Mikheeva; Med. Sovet., 2023, 13, 238–244.
14. F. Bouhezila; T. Bouchene; K. Dellil; F. Z. Saadat; 1st Int. Semin. Biol. Physiol. Pathophysiol. (ISBPP), 2023.
15. H.M. Djellouli; S. Taleb; D. Harrache-Chettouh; S. Djaroud; Santé, 2005, 15(2), 109–112.
16. A. Amara-Rekkab; Sci. J. King Faisal Univ. Basic Appl. Sci., 2023, 24(2), 26–30
17. A. L. Rodgers; Urol. Int., 1997, 58(2), 93–99.
18. S. Lewandowski; A. L. Rodgers; Clin. Chim. Acta., 2004, 345(1–2),17–34.
19. F. Abbassene; A. Maizia; N. Messaoudi; L. Bendahmane; H. Boukharouba; M. Daudon; A. Addou; Tunis Med., 2020, 98(5), 396–403.
20. F. Wu; J. Ma; J. Xue; X. Jiang; J. Liu; J. Zhang; Y. Xue; B. Liu; S. Qin; Heliyon, 2024, 10(16), e36401.
21. N. Takahashi; Y. Ohtsuka; Onsen Kenkyu, 2004, 67(2), 79–86.
22. Y. Nishida; J. Jpn. Soc. Balneol Climatol Phys. Med., 1970, 98–131.
23. A. Mousavi; R. Takele; B. Limbrick; K. N. Thaker; K. B. Scotland; Soc. Int. Uro. J., 2024, 5(4), 284–299.
24. O. Karagülle; U. Smorag; F. Candir; G. Gundermann; U. Jonas; A. J. Becker; A. Gehrke, C. Gutenbrunner; World J. Urol., 2007, 25, 315–323
25. E. Paul; P. Sasikumar; S. Gomathi; A. Abhishek; G. S. Selvam; Recombinant lactic acid bacteria secreting OxdC as a novel therapeutic tool for the prevention of kidney stone disease. In: Grumezescu AM (ed) Multifunctional systems for combined delivery, biosensing and diagnostics. Elsevier, Amsterdam, 2017, pp. 327–345.
26. S. J. M. Stoots; M. M. E.L. Henderickx; G. M. Kamphuis; Cent. Eur. J. Urol., 2024, 77, 494–506.
27. S.E. Avram; C. Mandiuc; I. Petean; L.B. Tudoran; G. Borodi; Studia UBB Chemia., 2025, 70(3), 35–53.
28. S.E. Avram; L.B. Tudoran; G. Borodi; I. Petean; Water, 2025, 17, 2892.
29. K. Sekkoum; H. M. Djellouli; N. Belkboukhari; S. Taleb; A. Cheriti; Ann. Sci. Technol., 2012, 4(1),1–8
30. Z. Djelloul; A. Djelloul; A. Bedjaoui; Z. Kaid-Omar; A. Attar; M. Daudon; A. Addou; Prog. Urol., 2006, 16(3), 328–335.
31. H. Haffar; A. Chetouani; Rev. Agr. Acad., 2024, 7(2), 106–126.
32. N. Benahmed; A. Cheriti, Egypt. J. Chem. 2025, 1-13
33. B. Hannache; La lithiase urinaire : épidémiologie, rôle des éléments traces et des plantes médicinales. Dissertation, Université Paris Sud – Paris XI. 2014, pp. 1-102
34. I. Djaafri; K. Seghir; V. Vallès; L. Barbiéro; Earth, 2024, 5(2), 214–227.
35. S. Quattrini; B. Pampaloni; M. L. Brandi; Clin. Cases Miner. Bone Metab., 2017, 13(3), 173–180.
36. L. Liu; C. Lin; X. Li; Y. Cheng; R. Wang; C. Luo; X. Zhao; Z. Jiang; Evid. Based Complement Alternat. Med., 2023, 1-10
37. W. Weber; S. Kub; Environ. Sci. Eur., 2022, 34(1), 34-53.
38. H. Shi; Y. Du; Y. Xiong; Y. Deng; Q. Li; Sci. Total Environ., 2024, 173-283
39. A. Kumar; S. K. Singh; S. K. Meena; S. K. Sinha; L. Rana; Int. J. Environ. Clim. Change, 2024, 14(3),17–31.
40. Y. Sailaukhanuly; S. Azat; M. Kunarbekova; A. D. Tovassarov; K. Toshtay; Z. T. Tauanov; L. Carlsen; R. Berndtsson; Int. J. Environ. Res. Public Health, 2023, 21(1), 2101-0055
41. Guidelines for drinking-water quality: 4th edition incorporating the first and second addenda [Internet]. Geneva: World Health Organization; 2022.
42. M. Alsinnawi; Z. Maan; G. Rix; J. Clin. Urol., 2016, 9, 268–273.
43. B. Afsar; M. C. Kiremit; A. A. Sag; K. Tarim; O. Acar; T. Esen; Y. Solak; A. Covic; M. Kanbay; Eur. J. Intern. Med., 2016, 35, 16–24.
44. T. J. Lin; K. T. Yen; C. F. Chen; S. T. Yan; K. W. Su; Y. L. Chiang; Sensors (Basel), 2022, 22(8), 2208-3009
45. K. H. Ko; Y. Kim; H. M. Park; Y. H. Cha; T. S. Kim; L. Lee; G. Lim; J. Han; K. H. Ko; D. Y. Jeong; Appl. Phys. B, 2015, 120(2), 233–238.
46. A. Mujahid; A. I. Khan; A. Afzal; T. Hussain; M. H. Raza; A. T. Shah; W. U. Zaman; Appl. Nanosci., 2015, 5, 527–534.
47. K. Sekkoum; A. Cheriti; S. Taleb; N. Belboukhari; Arab. J. Chem., 2016, 9(3),330–334.
48. V. Asyana; F. Haryanto; L. Fitri; T. Ridwan; F. Anwary; H. Soekersi; J. Phys. Conf. Ser., 2016, 694,012-051.
49. R. M. Silverstein RM; G. C. Bassler; J. Chem. Educ., 1962, 39(11), 546.
50. J. Rodier, Analyse de l'eau:. 8th ed.,Paris, 1996 ; P214
51. F. Meiouet; S. El Kabbaj; M. Daudon; Prog. Urol., 2011, 21(1), 40–47.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Studia Universitatis Babeș-Bolyai Chemia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
