EFFICIENCY ANALYSIS OF SOME ZEOLITE MEDIA IN THE TREATMENT OF TECHNOLOGICAL WASTEWATER IN AGRO-ZOOTECHNICAL UNITS

Authors

  • Sebastian Ionuț OGNEAN Technical University, Faculty of Materials and Environmental Engineering, Department of Environment Engineering and Entrepreneurship of Sustainable Development, 30 Fantanele St., RO-400294 Cluj-Napoca, Romania https://orcid.org/0009-0000-5511-8477
  • Emilia Valentina PANTEA University of Oradea, Faculty of Environmental Protection, Department of Environmental Engineering, 26 Gen. Magheru St., 410087, Oradea, Romania, *emipantea@gmail.com. https://orcid.org/0000-0001-9684-5398
  • Valer MICLE Technical University, Faculty of Materials and Environmental Engineering, Department of Environment Engineering and Entrepreneurship of Sustainable Development, 30 Fantanele St., RO-400294 Cluj-Napoca, Romania https://orcid.org/0000-0003-1102-4537
  • Daria-Maria-Ecaterina FENEȘAN University of Agricultural Sciences and Veterinary Medicine, Faculty of Veterinary Medicine, Mănăștur St., nr. 3-5, 400037, Cluj-Napoca, Romania. https://orcid.org/0000-0002-2306-3624

DOI:

https://doi.org/10.24193/subbchem.2025.4.04

Keywords:

adsorption, clinoptilolite, ZNR (natural zeolite from Rupea), Turbidex, wastewater

Abstract

The present study aimed to evaluate the efficacy of two filtration media—Rupea natural zeolite (ZNR) and Turbidex—in reducing the pollutant load of wastewater from agro-zootechnical units. Both media were tested under identical operational conditions to explore their potential for sustainable wastewater valorization with minimal environmental impact. Results showed that ZNR exhibited higher adsorption rates for nitrites, nitrates, and ammonium, whereas Turbidex achieved greater retention for COD, total suspended solids (TSS), and turbidity. Filtration through both zeolitic media effectively reduced microbial loads, as indicated by the elimination of coliform bacteria and enterococci, along with a significant decrease in heterotrophic plate counts at 22°C and 37°C. These findings demonstrate the potential of small-scale zeolite filtration systems as eco-friendly solutions for agro - zootechnical wastewater treatment.

References

1. P. Chen; J. Environ. Manag., 2024, 365.

2. C. Tortajada; NPJ Clean Water, 2020, 3(1), 22.

3. S. Tong; R. Xia; J. Chen; W. Li; Y. Chen; J. Hydrol.: Reg. Stud., 2024, 56, 102040.

4. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy (OJ L 327, 22.12.2000, pp. 1–73).

5. D. Mooney; T. H. Kelley; Journal of Agricultural and Resource Economics, 2023, 48 (1), 202-18 (Doi: 10.22004/ag.econ.320671)

6. F. Jamil; M. Abdulgadir; M. Tesfaye; Green Chem. Lett. Rev., 2024, 17(1), 1–15.

7. S. Kumari; J. Chowdhry; M. Kumar; M. Garg; Environ. Res., 2024, 119782.

8. V. Giurgiu; D.I. Berean; A. Ionescu; M.S. Ciupe; C.R. Cimpean; C.I. Radu; D.G. Bitica; S. Bogdan; M.L. Bogdan; Vet. Anim. Sci., 2024, 23, 100333.

9. M. Senila; O. Cadar; Helyon, 2024, 10(3), e25303.

10. I.F. Voicea; I.C. Moga; E. Marin; D. Dumitru; C. Persu; D. Cujbescu; E3S Web Conf., 2020, 180, 03010.

11. F. Bud; S. Perța-Crișan; Cl. Ursachi; Șt.S. Gavrilaș; F.D. Munteanu; St. Cerc., St. CICBIA, 2024, 25(3), 255–264.

12. Y. Wang; Y. Chen; Q. Wang; Z. Liang; Agronomy, 2023, 13(2), 327.

13. D. Mooney; T.H. Kelley; J. Agric. Resour. Econ., 2023, 48(1), 202–218.

14. G. Amin; S. Konstantinovic; I. Jordanov; D. Djordjevic; Studia UBB Chemia, LXVIII, 2023, 1, 179–192.

15. K. Ignatowicz; J. Łozowicki; B. Łozowicka; J. Piekarski; Energies, 2023, 16(2), 660.

16. M. Senila; O. Cadar; L. Senila; B.S. Angyus; Agriculture, 2022, 12, 321.

17. N. Bolan; M. Kumar; E. Singh; A. Kumar; L. Singh; S. Kumar; K.H. Siddique; Environ. Int., 2022, 158, 106908.

18. S. Ayalew; A. Dagne; E. Alemayehu; T. Alemu; S. Leta; PLOS ONE, 2022, 17(5), e0268146.

19. S. Bouarroudj; H. Aksas; H. Lounici; N. Mameri; Sustainability, 2022, 15(3), 1892.

20. M. Bálintová; M. Holub; Acta Chim. Slovaca, 2019, 12(1), 68–75.

21. S. Babel; T.A. Kurniawan; J. Hazard. Mater., 2003, 97(1-3), 219–243.

22. D. Rios Reyes; D. Appasamy; C. Roberts; Dyna, 2011, 78(170), 125–134.

23. S. Wang; Y. Peng; Chem. Eng. J., 2010, 156(1), 11–24.

24. L. Wang; J. Wei; H. Zhang; Environ. Sci. Pollut. Res., 2020, 27(11), 12325–12340.

25. S.I. Ognean; V. Micle; O. Tamas-Krumpe; D. Feneșan; D. Agape; L. Ognean; Merit Res. J. Agric. Sci. Soil Sci., 2023, 11(2), 16–21.

26. M. Wekesa; G. Mutua; G. Ogendi; Int. J. Eng. Res. Technol., 2018, 7(6), 37–43.

27. P. Chen; J. Environ. Manag., 2024, 365.

28. D. Proca; C. Micu; F. Manea; C. Danielescu; In Exposure and Risk Assessment of Chemical Pollution – Contemporary Methodology; Springer: Netherlands, 2009, pp. 509–516.

29. A.I. Tetișan; Doctoral Thesis, Universitatea „Babeș-Bolyai”, Cluj-Napoca, 2010.

30. D. Marșavina; Doctoral Thesis, Universitatea Politehnica Timișoara, 2010.

31. S.I. Ognean; V. Micle; Octavia Tamas-Krumpe; Daria Feneșan; L. Ognean; Rev Rom Med Vet, 2023, 33/3, 89-96

32. T.H. Abed; D.S. Stefan; D.C. Berger; N.C. Marinescu; Water. Sustainability, 2024, 10, 16(18), 7888 (https://doi.org/10.3390/su16187888)

33. European Parliament and Council. Directive 2000/60/EC, OJ L 327, 22.12.2000, pp. 1–73.

34. SR ISO 10523:2012; Romanian Standardization Association: Bucharest, 2012.

35. SR EN 27888:1997; Romanian Standardization Association: Bucharest, 1997.

36. SR EN ISO 7027-1:2016; Romanian Standardization Association: Bucharest, 2016.

37. SR ISO 6060-96; Romanian Standardization Association: Bucharest, 1996.

38. STAS 6953-81; Romanian Standardization Association: Bucharest, 1981.

39. SR EN 26777:2002/C91:2006; Romanian Standardization Association: Bucharest, 2006.

40. SR ISO 7890-3:2000; ISO, Geneva, 2000.

41. SR EN ISO 6222:2004; Romanian Standardization Association: Bucharest, 2004.

42. ISO 9308-1; Romanian Standardization Association: Bucharest, 2000.

43. SR EN ISO 7899-2:2002; Romanian Standardization Association: Bucharest, 2002.

44. NTPA-001/2002; NORMATIV privind stabilirea limitelor de încărcare cu poluanţi a apelor uzate industriale şi urbane la evacuarea în receptorii naturali, 28.02.2002.

45. ***https://zeolitesproduction.com/

46. ***http://www.turbidex.com/parameters.htm

Downloads

Published

2025-12-16

How to Cite

OGNEAN, S. I., PANTEA, E. V., MICLE, V., & FENEȘAN, D.-M.-E. (2025). EFFICIENCY ANALYSIS OF SOME ZEOLITE MEDIA IN THE TREATMENT OF TECHNOLOGICAL WASTEWATER IN AGRO-ZOOTECHNICAL UNITS. Studia Universitatis Babeș-Bolyai Chemia, 70(4), 57–74. https://doi.org/10.24193/subbchem.2025.4.04

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.