CELLULOSE AND LIGNIN FIBERS MEDIATED REMOVAL OF THE OIL SPILL POLLUTION

Authors

  • Daniel ARGHIROPOL Faculty of Materials and Environmental Engineering, Technical University, Cluj-Napoca, Romania.
  • Tiberiu RUSU Department of Environment Engineering and Entrepreneurship of Sustainable Development, Faculty of Materials and Environmental Engineering, Technical University, Cluj-Napoca, Romania.
  • Miuța Rafila FILIP “Raluca Ripan” Institute for Research in Chemistry, Babeș-Bolyai University, Cluj-Napoca, Romania.
  • Codruța SAROSI “Raluca Ripan” Institute for Research in Chemistry, Babeș-Bolyai University, Cluj-Napoca, Romania. https://orcid.org/0000-0003-2960-9832
  • Laura SILAGHI-DUMITRESCU “Raluca Ripan” Institute for Research in Chemistry, Babeș-Bolyai University, Cluj-Napoca, Romania. https://orcid.org/0000-0001-9060-8463
  • Gertrud-Alexandra PALTINEAN “Raluca Ripan” Institute for Research in Chemistry, Babeș-Bolyai University, Cluj-Napoca, Romania. Corresponding author: gertrud.paltinean@ubbcluj.ro https://orcid.org/0000-0002-4000-1978

DOI:

https://doi.org/10.24193/subbchem.2025.3.14

Keywords:

Petroleum hydrocarbons, vegetal absorbents, Cellulose fibers

Abstract

Vegetal matter like hemp wastes, peat and sawdust have fibrous and porous morphology if they are properly shredded as observed in SEM images. Polarized light microscopy has been used to study the crystalline structure of biomass and FTIR spectroscopy evidences their specific chemical bonds. Hemp wastes reveal porous husk remains of about 50 – 500 μm abundant in lignin and cellulose fibers lint having length of about 5 – 50 μm. Shredded peat reveal finer cellulose fibrous formation of about 50 μm length and lignin shell like particles of about 20 – 200 μm. Saw dust contains mainly cellulose fibers grouped in flake particles of about 700 μm with fringed edges. These samples were subjected to diesel and oil spills. The gravimetric test indicates the best specific absorption for diesel of 1.76 g/g obtained by sawdust and the lower value of 1.48 g/g was measured for hemp waste. The oil spill was better absorbed by sawdust having a specific absorption of 2.28 g/g and the weaker absorption was measured for hemp wastes around 1.66 g/g. The lower values measured for peat are caused by the presence of quartz particles as forest soil impurity.

References

1. S. S. Shetty; D. D. S. Harshitha; S. Sonkusare; P. B. Naik; S. N. Kumari; H. Madhyastha. Heliyon, 2023, 9(9), e19496. https://doi.org/10.1016/j.heliyon.2023.e19496

2. M. Rusca; T. Rusu; S. E. Avram; D. Prodan; G. A. Paltinean; M. R. Filip; I. Ciotlaus; P. Pascuta; T. A. Rusu; I. Petean. Atmosphere, 2023, 14, 862. https://doi.org/10.3390/atmos14050862

3. M. A. Hoaghia; I. Aschilean; V. Babalau-Fuss; A. Becze; O. Cadar; C. Roman; M. Roman; M. Senila; E. Kovacs. Studia UBB Chemia, 2021, 66(2), 95-104. DOI:10.24193/subbchem.2021.2.08

4. N. N. N. Samsuria; W. Z. W. Ismail; M. N. W. M. Nazli; N. A. A. Aziz; A. K. Ghazali. Water, 2025, 17, 1252. https://doi.org/10.3390/w17091252

5. E. Lusweti; E. K. Kanda; J. Obando; M. Makokha, Water Pract. & Technol., 2022, 17(10), 2171–2185. https://doi.org/10.2166/wpt.2022.104

6. F. Ahmed and A. N. M. Fakhruddin. J. Environ. Sci. & Nat. Resour, 2018, 11(3), 555811. DOI: 10.19080/IJESNR.2018.11.555811

7. M. Kamranifar; H. Pourzamani; R. Khosravi; G. Ranjbar; K. Ebrahimpour. Sci. Rep., 2025, 15, 8459. https://doi.org/10.1038/s41598-025-92512-9

8. R. Olga; R. Viktor; I. Alexander; S. Zinnur; P. Alexandra. Procedia Chemistry, 2015, 15, 231-236. https://doi.org/10.1016/j.proche.2015.10.037

9. M. R. Pires; M. S. Lorenço; M. C. Dias; L. R. da Silva; I. Petri Junior; F. A. Mori. Chem. Eng. Technol., 2021, 44(12), 2269–2278. https://doi.org/10.1002/ceat.202100105

10. D. Zang; F. Liu; M. Zhang; Z. Gao; C. Wang. Chem. Eng. Res. Des., 2015, 102, 34-41. https://doi.org/10.1016/j.cherd.2015.06.014

11. C. Cojocaru; M. Macoveanu; I. Cretescu. Colloids Surf. A: Physicochem. Eng. Asp., 2011, 384, 675–684. doi:10.1016/j.colsurfa.2011.05.036

12. C. Mongioví; N. Morin-Crini; V. Placet; C. Bradu; A. R. Lado Ribeiro; A. Ivanovska; M. Kostić; B. Martel; C. Cosentino; G. Torri; V. Rizzi; J. Gubitosa; P. Fini; P. Cosma; E. Lichtfouse; D. Lacalamita; E. Mesto; E. Schingaro; N. De Vietro; G. Crini. Hemp-Based Materials for Applications in Wastewater Treatment by Biosorption-Oriented Processes: A Review. Edited by D. C. Agrawal; R. Kumar; M. Dhanasekaran in Cannabis/Hemp for Sustainable Agriculture and Materials, Springer Singapore, 2022, pp. 239-295.

13. E. Meez; A. Hosseini-Bandegharaei; A. Rahdar; A. Thysiadou; K. A. Matis; G. Z. Kyzas. Biointerface Research in Applied Chemistry, 2021, 11(4), 11778 – 11796. https://doi.org/10.33263/BRIAC114.1177811796

14. X. Chen; R. Xu; Y. Xu; H. Hu; S. Pan; H. Pan. J. Hazard. Mater., 2018, 350, 38-45. https://doi.org/10.1016/j.jhazmat.2018.01.057

15. L. Di Giorgio, L. Martín, P.R. Salgado, A.N. Mauri, Carbohydr. Polym., 2020, 238, 116187. https://doi.org/10.1016/j.carbpol.2020.116187

16. P.R. Seidl, A.K. Goulart, Curr. Opin. Green Sustain. Chem., 2016, 2, 48-53. https://doi.org/10.1016/j.cogsc.2016.09.003

17. S.E. Avram, L.B. Tudoran, C. Cuc, B. Borodi, B.V. Birle, I. Petean, J. Compos. Sci., 2024, 8, 542. https://doi.org/10.3390/jcs8120542

18. M. Filip, M. Vlassa, I. Petean, I. Țăranu, D. Marin, I. Perhaiță, D. Prodan, G. Borodi, C. Dragomir, Agriculture, 2024, 14, 2038. https://doi.org/10.3390/agriculture14112038

19. J. Shen, Y. Qin, J. Wang, Y. Shen, G. Wang, Minerals, 2018, 8, 82. https://doi.org/10.3390/min8030082

20. H.I. Petersen, S. Lindström, H.P. Nytoft, P. Rosenberg, Int. J. Coal Geol., 2009, 78, 119-134. https://doi.org/10.1016/j.coal.2008.11.003

21. M. Safaei-Farouji, D. Misch, R.F. Sachsenhofer, J. Weitz, I. Kojic, K. Stojanović, S, Tursyngaliyev, M. Junussov, M.; Fustic, Int. J. Coal Geol., 2025, 306, 104813. https://doi.org/10.1016/j.coal.2025.104813

22. A. Zdravkov, A. Bechtel, K. Stojanović, D. Groβ, J. Weitz, I. Kojić, R.F. Sachsenhofer, D. Misch, D. Životić, Int. J. Coal Geol., 2025, 104843, https://doi.org/10.1016/j.coal.2025.104843

23. S.E. Avram, L.B. Tudoran, G. Borodi, M.R. Filip, I. Ciotlaus, I. Petean, Sustainability, 2025, 17, 2906. https://doi.org/10.3390/su17072906

24. G.A. Păltinean, I. Petean, G. Arghir, D. F. Muntean, L.-D. Boboş, M. Tomoaia-Cotişel, Part. Sci. Technol., 2016, 34 (5), 580.

25. S.G. Kostryukov, H.B. Matyakubov, Yu. Yu. Masterova, A. Sh. Kozlov, M.K. Pryanichnikova, A.A. Pynenkova, N.A. Khluchina, J. Anal. Chem., 2023, 78 (6), 718. https://doi.org/10.1134/S1061934823040093

26. Y. Wang, J. Xiang, Y. Tang, W. Chen, & Y. Xu, Appl. Spectrosc. Rev., 2021, 57(4), 300. https://doi.org/10.1080/05704928.2021.1875481

27. R. Javier-Astete, J. Jimenez-Davalos, G. Zolla PLoS ONE 2021, 16(10), e0256559. https://doi.org/10.1371/journal. pone.0256559.

28. S.E. Avram, L.B. Tudoran, G. Borodi, M.R. Filip, I. Petean, Sustainability, 2025, 17, 2077. https://doi.org/10.3390/su17052077.

Downloads

Published

2025-09-24

How to Cite

ARGHIROPOL, D., RUSU, T., FILIP, M. R., SAROSI, C., SILAGHI-DUMITRESCU, L., & PALTINEAN, G.-A. (2025). CELLULOSE AND LIGNIN FIBERS MEDIATED REMOVAL OF THE OIL SPILL POLLUTION. Studia Universitatis Babeș-Bolyai Chemia, 70(3), 201–212. https://doi.org/10.24193/subbchem.2025.3.14

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2 

Similar Articles

1 2 3 4 5 6 > >> 

You may also start an advanced similarity search for this article.