MOLYBDENUM FLAT COIL FILAMENT FOR SAMPLE INTRODUCTION AND MULTIELEMENTAL DETERMINATION BY SMALL-SIZED ELECTROTHERMAL VAPORIZATION CAPACITIVELY COUPLED MICROPLASMA OPTICAL EMISSION SPECTROMETRY

Authors

  • Sergiu CADAR National Institute for Research and Development of Optoelectronics (INOE 2000), INCD Bucharest; Research Institute for Analytical Instrumentation, Cluj-Napoca, Romania. https://orcid.org/0009-0006-1103-4494
  • Adrian-Ioan DUDU Faculty of Chemistry and Chemical Engineering; Enzymology and Applied Biocatalysis Research Center, Babeş-Bolyai University, Cluj-Napoca, Romania. https://orcid.org/0000-0002-2388-3331
  • Dorin PETREUS Faculty of Electronics, Telecommunications and Information Technology, Technical University, Cluj-Napoca, Cluj-Napoca, Romania. https://orcid.org/0000-0001-9238-6729
  • Simion Bogdan ANGYUS National Institute for Research and Development of Optoelectronics (INOE 2000), INCD Bucharest; Research Institute for Analytical Instrumentation, Cluj-Napoca, Romania. https://orcid.org/0000-0001-8073-6760
  • Maria FRENTIU National Institute for Research and Development of Optoelectronics (INOE 2000), INCD Bucharest; Research Institute for Analytical Instrumentation, Faculty of Chemistry and Chemical Engineering; Cluj-Napoca, Romania. https://orcid.org/0000-0001-9111-8343
  • Eniko COVACI Faculty of Chemistry and Chemical Engineering; Research Center for Advanced Analysis, Instrumentation and Chemometrics, Babeş-Bolyai University, Cluj-Napoca, Romania. Corresponding author: eniko.covaci@ubbcluj.ro https://orcid.org/0000-0002-8453-9155

DOI:

https://doi.org/10.24193/subbchem.2025.3.02

Keywords:

electrothermal vaporization, molybdenum flat coil filament, capacitively coupled microsplasma optical emission spectrometry

Abstract

A novel small-sized electrothermal vaporization device including a molybdenum flat coil filament was studied for sample introduction into a capacitively coupled microplasma (SSETV-µCCP-OES) for the simultaneous multielemental determination of Cu, Zn, Pb, Cd, Hg, Se, Te, Sb and Bi by optical emission spectrometry. The limits of detection, obtained by this experimental setup were 2–25 times lower than those previously obtained using a Rh coil filament, ranging from 0.16 µg L–1 for Cd to 10.7 µg L¹ for Se. This improvement was primarily attributed to the more efficient heating of the Mo flat coil filament compared to the Rh coil filament, considering that Rh has a lower melting point and therefore must be heated more gradually. Consequently, in the transient spectra recorded using the Mo flat coil filament the maximum signal intensities were observed earlier, ranging from 1.5 s for Hg to 3.3 s for Zn, compared to those obtained with the Rh coil filament, which ranged from 2.4 s for Hg to 5.3 s for Cu. The results demonstrate the strong analytical potential of the SSETV device with the Mo flat coil filament, for the simultaneous multielemental trace metal analysis.

References

1. T. Matusiak; K. Swiderski; J. Macioszczyk; P. Jamroz; P. Pohl; L. Golonka; Sensor Rev., 2020, 40, 437–444.

2. D. A. Agrawal; R. Keçili; F. Ghorbani-Bidkorpeh; C. M. Hussain; TrAC - Trends Anal. Chem., 2021, 143, 116383.

3. Y. Zhang; J. Liu; X. Mao; G. Chen; D. Tian; TrAC - Trends Anal. Chem., 2021, 144, 116437.

4. A. Galuszka; Z. Migaszewski; J. Namieśnik; TrAC - Trends Anal. Chem., 2013, 50, 78–84.

5. H. R. Badiei; C. Liu; V. Karanassios; Microchem. J., 2013, 108, 131–136.

6. D. C. Gregoire; Electrothermal vaporization sample introduction for inductively coupled plasma-mass spectrometry in Comprehensive Analytical Chemistry, Elsevier, 2000, Vol. 34, pp. 347–444.

7. Y.-I. Lee; J.-K. Kim; K.-H. Kim; Y.-J. Yoo; G.-H. Back; S.-C. Lee; Microchem. J., 1998, 60, 231–241.

8. L. Huang; D. Beauchemin; Electrothermal vaporization in Sample Introduction Systems in ICPMS and ICPOES, ed. by D. Beauchemin, Elsevier, Amsterdam, 2020, pp. 411–467.

9. M. Aramendía; M. Resano; F. Vanhaecke; Anal. Chim. Acta., 2009, 648, 23–44.

10. M. Resano; F. Vanhaecke; M. T. C. de Loos-Vollebregt; J. Anal. At. Spectrom., 2008, 23, 1450–1475.

11. G. C. Y. Chan; G. M. Hieftje; N. Omenetto; O. Axner; A. Bengtson, et al.; Appl. Spectrosc., 2024, 79, 481–735.

12. X. Jiang; Y. Chen; C. Zheng; X. Hou; Anal. Chem., 2014, 86, 5220–5224.

13. N. H. Bings; Z. Stefanka; J. Anal. At. Spectrom., 2003, 18, 1088–1096.

14. H. Zheng; J. Ma; Z. Zhu; Z. Tang; S. Hu; Talanta, 2015, 132, 106–111.

15. Q. Jin; H. Zhang; W. Yang; Q. Jin; Y. Shi; Talanta, 1997, 44, 1605–1614.

16. T. Frentiu; E. Darvasi; S. Butaciu; M. Ponta; D. Petreus; R. Etz; M. Frentiu; Microchem. J., 2015, 121, 192–198.

17. T. Frentiu; E. Darvasi; S. Butaciu; M. Ponta; D. Petreus; A. I. Mihaltan; M. Frentiu; Talanta, 2014, 129, 72–78.

18. P. J. Parsons; Y. Zhou; C. D. Palmer; K. M. Aldous; P. Brockman; J. Anal. At. Spectrom., 2003, 18, 4–10.

19. G. Lan; X. Li; J. Yao; X. Yu; Q. Liu; C. Qiu; X. Mao; Front. Nutr., 2023, 10, 1201801.

20. L. Qian; Z. Lei; X. Peng; G. Yang; Z. Wang; Anal. Chim. Acta., 2021, 1162, 338495.

21. Y. Deng; J. Hu; M. Li; L. He; K. Li; X. Hou; X. Jiang; Anal. Chim. Acta., 2021, 1163, 338502.

22. S. N. Hanna; K. Joseph; C. J. C. P.; B. T. and Jones; Instrum. Sci. Technol., 2011, 39, 345–356.

23. A. C. Davis; C. P. Calloway; B. T. Jones; Talanta, 2007, 71, 1144–1149.

24. N. Li; Z. Wu; Y. Wang; J. Zhang; X. Zhang; H. Zhang; W. Wu; J. Gao; J. Jiang; Anal. Chem., 2017, 89, 2205–2210.

25. J. A. Rust; G. L. Donati; M. T. Afonso; J. A. Nóbrega; B. T. Jones; Spectrochim. Acta B., 2009, 64, 191–198.

26. P. W. J. M. Boumans; Spectrochim. Acta B., 1991, 46, 431–445.

27. P. W. J. M. Boumans; J. C. Ivaldi; W. Slavin; Spectrochim. Acta B., 1991, 46, 641–665.

28. S. B. Angyus; E. Levei; D. Petreus; R. Etz; E. Covaci; O. T. Moldovan; M. Ponta; E. Darvasi; T. Frentiu; Molecules, 2021, 26, 2642.

29. S. B. Angyus; M. Senila; T. Frentiu; M. Ponta; M. Frentiu; E. Covaci; Talanta, 2023, 259, 124551.

30. S. Weagant; V. Chen; V. Karanassios; Anal. Bioanal. Chem., 2011, 401, 2865–2880.

Downloads

Published

2025-09-24

How to Cite

CADAR, S., DUDU, A.-I., PETREUS, D., ANGYUS, S. B., FRENTIU, M., & COVACI, E. (2025). MOLYBDENUM FLAT COIL FILAMENT FOR SAMPLE INTRODUCTION AND MULTIELEMENTAL DETERMINATION BY SMALL-SIZED ELECTROTHERMAL VAPORIZATION CAPACITIVELY COUPLED MICROPLASMA OPTICAL EMISSION SPECTROMETRY. Studia Universitatis Babeș-Bolyai Chemia, 70(3), 21–33. https://doi.org/10.24193/subbchem.2025.3.02

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

You may also start an advanced similarity search for this article.