EFFECT OF AMINES AS PROTON VECTORS ON CATALYTIC HYDROGEN EVOLUTION REACTION ON COPPER

Authors

  • Ágnes JAKAB Faculty of Industrial Chemistry and Environmental Engineering, Polytechnic University, Timișoara, Romania. Email: agness.jakab@upt.ro.
  • Nicolae VASZILCSIN Faculty of Industrial Chemistry and Environmental Engineering, Polytechnic University, Timișoara, Romania. Email: nicolae.vaszilcsin@upt.ro.
  • Florica MANEA Faculty of Industrial Chemistry and Environmental Engineering, Polytechnic University, Timișoara, Romania. Email: florica.manea@ upt.ro. https://orcid.org/0000-0003-1285-6634
  • Mircea Laurențiu DAN Faculty of Industrial Chemistry and Environmental Engineering, Laboratory of Electrochemistry, Corrosion and Electrochemical Engineering, University Politehnica Timisoara, Romania. Email: mircea.dan@upt.ro. https://orcid.org/0000-0002-7798-5974

Keywords:

proton carrier, electrocatalytic effect, hydrogen evolution reaction, Tafel plots, EIS

Abstract

In this study, the catalytic effect of several organic amines on hydrogen evolution reaction (HER) was studied on copper. Kinetic parameters of electrode process were determined from Tafel polarization curves to obtain more information about the catalytic effect of the organic amines. The best electrocatalytic effect was reached in 0.5 M H2SO4 solution for N,N-dimethylaniline (DMA). A correlation between molecular parameters and electrocatalytic effect of amines has been performed. A larger dipole moment determined for N,N-dimethylanilinium (DMAH+) showed that the orientation of these molecules are more favorable ordered on the electrode surface. Also, electrochemical impedance spectroscopy (EIS) technique was used to assess quantitatively the DMA effect over the electrochemical parameters for HER on copper. A significant enhancement of charge transfer rate was noticed with DMA concentration and temperature increasing. In addition, the adsorption behavior of DMA on copper surface followed the Langmuir adsorption isotherm. The low negative values of the standard Gibbs free energy of adsorption ΔGads at different temperature suggested a physical sorption. The value of the activation energy determined for 10-3 M DMA was 37% lower than that determined in its absence. A direct involvement of DMA in HER mechanism on the copper as proton carrier from bulk to the solution/metal interface was found.

References

I. Dincer, C. Acar, International Journal of Hydrogen Energy, 2014, 1.

S. Sharma, S.K. Ghoshal, Renewable Sustainable and Energy Reviews, 2015, 43, 1151.

Y. Zhang, R. Wang, X. Lin, Z. Wang, J. Liu, J. Zhou, K. Cen, Applied Catalysis B: Environmental, 2015, 166–167, 413.

T. Kawada, H. Yamashita, Q. Zheng, M. Machida, International Journal of Hydrogen Energy, 2014, 39(35), 20646.

A.C. Tizzoni, N. Corsaro, C. D'Ottavi, S. Licoccia, S. Sau, P. Tarquini, International Journal of Hydrogen Energy, 2015, 40(11), 4065.

J.A. Allen, G. Rowe, J.T. Hinkley, S.W. Donne, International Journal of Hydrogen Energy, 2014, 39(22), 11376.

B. Pierozynski, International Journal of Electrochemical Science, 2011, 6, 63.

F. Safizadeh, E. Ghali, G. Houlachi, International Journal of Hydrogen Energy, 2015, 40, 256.

A. Survila, S. Kanapeckaite, J. Pileckiene, J. Budiene, International Journal of Electrochemistry, 2011, 9.

A.A. Ismail, D.W. Bahnemann, Solar Energy Materials and Solar Cells, 2014, 128, 85.

C. Zamfirescu, I. Dincer, G.F. Naterer, International Journal of Hydrogen Energy, 2012, 37(12), 9537.

W. Yao, X. Song, C. Huang, Q. Xu, Q. Wu, Catalysis Today, 2013, 199, 42.

Z. Wang, R.R. Roberts, G.F. Naterer, K.S. Gabriel, International Journal of Hydrogen Energy, 2012, 37(21), 16287.

D. Praveen Kumar, N. Lakshmana Reddy, M. Mamatha Kumari, B. Srinivas, V. Durga Kumari, B. Sreedhar, V. Roddatis, O. Bondarchuk, M. Karthik, B. Neppolian, M.V. Shankar, Solar Energy Materials and Solar Cells, 2015, 136, 157.

W. Zhang, S. Wang, J. Li, X. Yang, Catalysis Communications, 2015, 59, 189.

J. Ji, L. Guo, Q. Li, F. Wang, Z. Li, J. Liu, Y. Jia, International Journal of Hydrogen Energy, 2015, 40(10), 3813.

T. Zhu, M.N. Chong, Nano Energy, 2015, 12, 347.

D. Sharma, A. Verma, V.R. Satsangi, R. Shrivastav, S. Dass, International Journal of Hydrogen Energy, 2014, 39(9), 4189.

M. Wang, Z. Wang, X. Gong, Z. Guo, Renewable and Sustainable Energy Reviews, 2014, 29, 573.

D. Wang, Z. Pan, Z. Wu, Z. Wang, Z. Liu, Journal of Power Sources, 2014, 264, 229.

S.S.J. Aravind, M. Costa, V. Pereira, A. Mugweru, K. Ramanujachary, T.D. Vaden, International Journal of Hydrogen Energy, 2014, 39(22), 11528.

J. Ji, L. Guo, Q. Li, F. Wang, Z. Li, J. Liu, Y. Jia, International Journal of Hydrogen Energy, 2015, 40(10), 3813.

D. Wang, Z. Wang, C. Wang, P. Zhou, Z. Wu, Z. Liu, Electrochemistry Communications, 2013, 34, 219.

B.B. Li, S.Z. Qiao, X.R. Zheng, X.J. Yang, Z.D. Cui, S.L. Zhu, Z.Y. Li, Y.Q. Liang, Journal of Power Sources, 2015, 284, 68.

X. Xia, Z. Zheng, Y. Zhang, X. Zhao, C. Wang, International Journal of Hydrogen Energy, 2014, 39(18), 9638.

A.W. Jeremiasse, J. Bergsma, J.M. Kleijn, M. Saakes, C.J.N. Buisman, M.C. Stuart, H.V.M. Hamelers, International Journal of Hydrogen Energy, 2011, 36(17), 10482.

D. Hou, W. Zhou, X. Liu, K. Zhou, J. Xie, G. Li, S. Chen, Electrochimica Acta, 2015, 166, 26.

A.W. Jeremiasse, J. Bergsma, J.M. Kleijn, M. Saakes, C.J.N. Buisman, M.C. Stuart, H.V.M. Hamelers, International Journal of Hydrogen Energy, 2011, 36(17), 10482.

S. Meyer, A.V. Nikiforov, I.M. Petrushina, K. Köhler, E. Christensen, J.O. Jensen, N.J. Bjerrum, International Journal of Hydrogen Energy, 2015, 40(7), 2905.

M.P.M. Kaninski, V.M. Nikolic, T.N. Potkonjak, B.R. Simonovic, N.I. Potkonjak, Applied Catalysis A: General, 2007, 321, 93.

R. Cretu, A. Kellenberger, N. Vaszilcsin, International Journal of Hydrogen Energy, 2013, 38, 11685.

R. Cretu, A. Kellenberger, M. Medeleanu, N. Vaszilcsin, International Journal of Electrochemical Science, 2014, 9, 4465.

C.C. Vaduva, N. Vaszilcsin, A. Kellenberger, M. Medeleanu, International Journal of Hydrogen Energy, 2011, 36(12), 6994.

C.C. Vaduva, N. Vaszilcsin, A. Kellenberger, International Journal of Hydrogen Energy, 2012, 37, 12089.

C.C. Vaduva, “PhD. Thesis”, Ed. Politehnica, Timisoara, 2013.

M. Szycher, “Szycher's Handbook of Polyurethanes”, CRC-Press, USA, 2013.

C. Reichardt, “Solvents and Solvent Effects in Organic Chemistry”, WILEY-VCH, Germany, 2003.

S. Fletcher, Journal of Solid State Electrochemistry, 2009, 13, 537.

M.N. El-Haddad, Carbohydrate Polymers, 2014, 112, 595.

N. Abdulwali, F. Mohammed et al., International Journal of Electrochemical Science, 2014, 9, 6402.

A.M. Al-Bonayan, International Journal of Electrochemical Science, 2015, 10, 589.

Downloads

Published

2015-09-30

How to Cite

JAKAB, Ágnes ., VASZILCSIN, N. ., MANEA, F. ., & DAN, M. L. . (2015). EFFECT OF AMINES AS PROTON VECTORS ON CATALYTIC HYDROGEN EVOLUTION REACTION ON COPPER. Studia Universitatis Babeș-Bolyai Chemia, 60(3), 63–76. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/chemia/article/view/8467

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 10 11 12 13 14 15 16 17 18 19 > >> 

You may also start an advanced similarity search for this article.