MODELLING AND PREDICTION OF LIPOPHILICITY FOR NATURAL COMPOUNDS WITH STRONG BIOLOGICAL ACTIVITY

Authors

  • Costel SÂRBU Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania. Email: csarbu@chem.ubbcluj.ro. https://orcid.org/0000-0001-9374-2078
  • Rodica Domnica NAŞCU-BRICIU Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania. Email: rodicab2003@yahoo.com.

Keywords:

modelling, alkaloids, mycotoxins, toxicity

Abstract

The goal of this study was to develop high statistical significant models for lipophilicity estimation for a group of 60 compounds with increased toxicity, belonging to alkaloids and mycotoxins. The multiple linear regression modelling was made by means of genetic algorithms as a function of 972 molecular descriptors, computed by ChemOffice and Dragon Plus software and completed by internet available module for Log P computation, ALOGPS 2.1. The compounds classification has been realized using principal component analysis and hierarchical cluster analysis. Data evaluation has been realized by various correlation matrices and relevant graphs. The modelling was made on the basis of 26 compounds with known log Pexp values and the results were validated by means of additional models developed for a series of 20 compounds. The other 6 compounds, which were excluded from the modelling process, were used afterwards as test set for prediction and comparison. The most descriptive models were those retaining four descriptors, and in all models were selected at least one computationally expressed log P value (miLogP, KOWWIN and ALOGP most often). All the obtained results are highly suggestive and offer a very pertinent idea regarding the lipophilicity range of natural compounds of increased toxicity. The models were validated considering various statistical parameters and different correlation matrices defined by high statistical significance.

References

J. D. McChesney, S. K. Venkataraman, J. T. Henri, Phytochemistry, 2007, 68, 2015.

D. J. Newman, G. M. Cragg, K. M. Snader, Journal of Natural Products, 2003, 66 (7), 1022.

G. M. Cragg, D. G. I. Kingston, D. J. Newman, “Anticancer Agents from Natural Products”; CRC Press, Boca Raton, 2005.

K. E. Panter, L. F. James, Journal of Animal Science, 1990, 68, 892.

R. A. Saporito, M. A. Donnelly, T. F. Spande, H. M. Garraffo, Chemoecology, 2012, 22, 159.

R. Andraws, P. Chawla, D. L. Brown, Progress in Cardiovascular Diseases, 2005, 47, 217.

A. Yiannikourisa, J.-P. Jouany, Animal Research, 2002, 51, 81.

N. W. Turner, S. Subrahmanyam, S. A. Piletsky, Analytica Chimica Acta, 2009, 632, 168.

C. A. Robbins, L. J. Swenson, M. L. Nealley, R. E. Gots, B. J. Kelman, Applied Occupational and Environmental Hygiene, 2000, 15 (10), 773.

M. Z. Zheng, J. L. Richard, J. Binder, Mycopathologia, 2006, 161, 261.

S. Berger, D. Sicker, „Classics in Spectroscopy“, Wiley-VCH, Weinheim, 2009.

K. C. Nicolaou, T. Morgan, “Molecules that changed the world”, Wiley-VCH, Weinheim, 2008.

R. Pignatello, S. Guccione, S. Forte, C. Di Giacomo, V. Sorrenti, L. Vicari, G. U. Barretta, F. Balzanoc, G. Puglisi, Bioorganic & Medicinal Chemistry, 2004, 12, 2951.

A. A. Toropov, A. P. Toropova, Journal of Molecular Structure: Theochem, 2001, 538, 197.

I. V. Tetko, J. Gasteiger, R. Todeschini, A. Mauri, D. Livingstone, P. Ertl, V. A. Palyulin, E. V. Radchenko, N. S. Zefirov, A. S. Makarenko, V. Y. Tanchuk, V. V. Prokopenko, Journal of Computer-Aided Molecular Design, 2005, 19, 453.

B. Testa, P. A. Carrupt, P. Gaillard, F. Billois, P. Weber, Pharmaceutical Research, 1996, 13, 335.

M. J. Waring, Expert Opinion on Drug Discovery, 2010, 5, 235.

Q. Du, G. A. Artec, Journal of Computer-Aided Molecular Design, 1996, 10, 133.

M.Kompany-Zareh, Medicinal Chemistry Research, 2009, 18, 143.

C. Sârbu, C. Onişor, M. Posa, S. Kevresan, K. Kuhajda, Talanta, 2008, 75, 651.

C. Onişor, M. Poša, S. Kevrešan, K. Kuhajda, C. Sârbu, Journal of Separation Science 2010, 33, 3110.

S. Trapp, R. W. Horobin, European Biophysics Journal, 2005, 34, 959.

M. Jaiswal, P. V. Khadikar, C. T. Supuran, Bioorganic & Medicinal Chemistry Letters, 2004, 14, 5661.

G. Caron, G; Ermondi, A. Damiano, L. Novaroli, O. Tsinman, J. A. Ruell, A. Avdeef, Bioorganic & Medicinal Chemistry, 2004, 12, 6107.

T. Takagi, M.Sugeno, IEEE Transactions on Systems, Man, and Cybernetics, 1998, 15, 116.

C. Sârbu, D. Casoni, A. Kot-Wasik, A. Wasik, J. Namieśnik, Journal of Separation Science, 2010, 33, 2219.

D. Casoni, J. Petre, V. David, C. Sârbu, Journal of Separation Science, 2011, 34 (3), 247.

R. D. Briciu, A. Kot-Wasik, A. Wasik, J. Namieśnik, C. Sârbu, Journal of Chromatography A, 2010, 1217, 3702.

C. Sârbu, R. D. Naşcu-Briciu, D. Casoni, A. Kot-Wasik, A. Wasik, J. Namieśnik, Journal of Chromatography A, 2012, 1266, 53.

R. Todeschini, M. Lasagni, E. Marengo, Journal of Chemometrics, 1994, 8, 263.

E. Benfenati, “Quantitative Structure Activity Relationships for Pesticide Regulatory Purposes”, Elsevier, Amsterdam, 2007, chapter 8.

Downloads

Published

2015-03-30

How to Cite

SÂRBU, C. ., & NAŞCU-BRICIU, R. D. . (2015). MODELLING AND PREDICTION OF LIPOPHILICITY FOR NATURAL COMPOUNDS WITH STRONG BIOLOGICAL ACTIVITY. Studia Universitatis Babeș-Bolyai Chemia, 60(1), 265–280. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/chemia/article/view/8423

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.