EVALUATION OF THE ANALYTICAL CAPABILITY OF THERMAL DESORPTION ATOMIC ABSORPTION SPECTROMETRY METHOD USED FOR MERCURY DETERMINATION IN SEAFOOD

Authors

Keywords:

mercury, uncertainty estimation, validation, seafood, TD-AAS

Abstract

Mercury is recognized as a highly toxic and widespread element in environment that can be transferred in the whole food chain. Thus, the content of mercury in foodstuff become of great interest. The aim of this paper is to assess the analytical capability and validation of the method for quantitative determination of total mercury (Hg) in seafood using thermal desorption atomic absorption spectrometry (TD-AAS). TD-AAS is a simple technique which does not require sample digestion prior to analysis. The main figures of merit such as selectivity, linearity, limit of detection (LoD), limit of quantification (LoQ), working range, accuracy and precision were studied and discussed in relation with the requirements in the Commission Decision 2002/657/EC and Commission Regulations 2011/836/EU and 2007/333/EC. Measurement uncertainty was estimated using top-down approach and was compared with the maximum uncertainty value calculated as specified in the Commission Decision 2002/ 657/EC. LoD estimated using 3s criterion was found to be 3.0 µg kg-1, while LOQ 9.0 µg kg-1. The recovery (%), estimated by using the certified reference material BCR-463 Tuna Fish, was 95 ± 5.0 %, whereas recovery (%) estimated using spiked samples was 92 ± 5.6 %. Standard deviation of repeatability (sr) was 5.6% (n=10 parallel samples), while standard deviation of within-laboratory reproducibility (sR) was 9.8 % (n=10 parallel samples), which correspond to HorRat’s index for repeatability and reproducibility of 0.28 and 0.50, respectively. The estimated expanded relative uncertainty (k=2) was 15.6 %. The obtained figures of merit fulfil the requirements of the European legislation and demonstrate that the laboratory can properly apply the method in order to achieve accurate results. The paper represents a model for the method validation in analytical laboratories in order to check the fit for purpose of analytical methods.

References

S. Ferreira, V. Lemos, L. Silva, A. Queiroz, A. Souza, E. da Silva, W. dos Santos, C. das Virgens, Microchemical Journal, 2015, 121, 227.

T. Frentiu, B.P. Pintican, S. Butaciu, A.I. Mihaltan, M. Ponta, M. Frentiu, Chemistry Central Journal, 2013, 7, 178.

M. Senila, E. Levei, L. Senila, G. Oprea, C. Roman, Journal of Environmental Science and Health, Part A, 2012, 47, 614.

E. Stanisz, J. Werner, H. Matusiewicz, Microchemical Journal, 2014, 114, 229.

M. Senila, E. Levei, L. Senila, O. Cadar, G. Oprea, C. Roman, Studia UBB Chemia, 2011, 56, 27.

T. Frentiu, S. Butaciu, E. Darvasi, M. Ponta, M. Senila, D. Petreus, M. Frentiu, Analytical Methods, 2015, 7, 747.

M. Hlodak, P. Matus, M. Urik, L. Korenkova, P. Mikusova, M. Senila, P. Divis, Water, Air and Soil Pollution, 2015, 226, 198.

United Nations Environment Programme (UNEP), Global Mercury Assessment, Geneva, Switzerland, 2002, http://www.unep.org/gc/gc22/Document/UNEP-GC22-INF3.pdf, accessed on January 29, 2016.

T. Frentiu, S. Butaciu, M. Ponta, M. Senila, E. Darvasi, M. Frentiu, D. Petreus, Food Analytical Methods, 2015, 8, 643.

K. Leopold, M. Foulkes, P.J. Worsfold, Analytica Chemica Acta, 2010, 663, 127.

B.D. Barst, C.R. Hammerschmidt, M.M. Chumchal, D.C.G. Muir, J.D. Smith, A.P. Roberts, T.R. Rainwater, P.E. Drevnick, Environmental Toxicology and Chemistry, 2013, 32, 1237.

D.P.C. de Quadros, B. Campanella, M. Onor, E. Bramanti, D.L.G. Borges, A. D'Ulivo, Spectrochimica Acta Part B, 2014, 101, 312.

Decision 2006/1881/EC setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Communities, L364, 5-24.

Decision 2002/657/EC implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Official Journal of the European Communities, L221, 8-36.

Decision 2007/333/EC laying down the methods of sampling and analysis for the official control of the levels of lead, cadmium, mercury, inorganic tin, 3-MCPD and benzo(a)pyrene in foodstuffs. Official Journal of the European Union, L88, 29-39.

T. Frentiu, M. Ponta, C. Sarbu, Chemosphere, 2015, 138, 96.

F. Podolsky, V. Ettler, O. Sebek, J. Jezek, M. Mihaljevic, B. Kribek, O. Sracek, A. Vanek, V. Penizek, V. Majer, B. Mapani, F. Kamona, I. Nyambe, Journal of Soil and Sediments, 2014, 15, 648.

A. Zierhut, K. Leopold, L. Harwardt, M. Schuster, Talanta, 2010, 81, 1529.

G.M.A Leiva, S. Morales, R. Segura, Water, Air and Soil Pollution, 2013, 224, 1390.

M. Urik, M. Hlodak, P. Mikusova, P. Matus, Water, Air and Soil Pollution, 2014, 225, 2219.

S.L.C. Ferreira, V.A. Lemos, L.O.B. Silva, A.F.S. Queiroz, A.S. Souza, E.G.P. da Silva, W.N.L. dos Santos, C.F. das Virgens, Microchemical Journal, 2015, 121, 227.

C. Martins, E. Vasco, E. Paixao, P. Alvito, Food Additives & Contaminants: Part B, 2013, 6, 151.

D.P. Torres, M.B. Martins-Teixeira, Food Additives & Contaminants: Part A, 2012, 29, 625.

H.P. Vieira, C.C. Nascentes, C.C. Windmoller, Journal of Food Composition and Analysis, 2014, 34, 1.

R.F.L. Ribeiro, A. Germano, Microchemical Journal, 2015, 121, 237.

EPA Method 7473, Mercury in solids and solutions by thermal decomposition, amalgamation, and atomic absorption spectrophotometry.

L. Senila, A. Gog, M. Senila, C. Roman, L. Silaghi-Dumitrescu, Revista de Chimie, 2012, 63, 557.

M. Senila, E. Levei, L. Senila, Chemistry Central Journal, 2012, 6, 119.

A. Drolc, A. Pintar, Accreditation and Quality Assurance, 2012, 17, 323.

P. Konieczka, M. Misztal-Szkudlinska, J. Namiesnik, P. Szefer, Polish Journal of Environmental Studies, 2010, 19, 931.

W. Horwitz, L.R. Kamps, R.W. Boyer, Journal of the Association of Official Analytical Chemists, 1980, 63, 1344.

M. Miclean, O. Cadar, C. Tanaselia, A. Gog, M. Senila, I.S. Groza, Environmental Engineering and Management Journal, 2012, 11, 133.

Teledyne Instruments Leeman Labs, “Hydra-C Automated Direct Hg Analyzer Operations Manual”.

Downloads

Published

2016-09-30

How to Cite

SENILA, M. ., CADAR, O. ., DROLC, A. ., PINTAR, A. ., SENILA, L. ., & FRENŢIU, T. . (2016). EVALUATION OF THE ANALYTICAL CAPABILITY OF THERMAL DESORPTION ATOMIC ABSORPTION SPECTROMETRY METHOD USED FOR MERCURY DETERMINATION IN SEAFOOD. Studia Universitatis Babeș-Bolyai Chemia, 61(3), 321–332. Retrieved from https://studia.reviste.ubbcluj.ro/index.php/chemia/article/view/8356

Issue

Section

Articles

Most read articles by the same author(s)

1 2 3 4 > >> 

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.