A MACROKINETIC STUDY OF THE OXIDATION OF METHANOL TO FORMALDEHYDE ON Fe2O3 – MoO3 OXIDE CATALYST
Keywords:
methanol oxidation process, kinetic study, macrokinetic modelAbstract
In this paper, a kinetic study about the oxidation of methanol to formaldehyde on Fe2O3-MoO3 oxide catalyst was investigated. Results about the changes of the conversion at different contact times and the way the composition of the mixture, respectively temperature influence the oxidation process, is submitted. The parameters were elected so that they match with those of the existing industrial reactors. We analyzed the influence of the above-mentioned parameters on the rate of the process. Processing the experimental results in coordinates allowed the determination of the activation energy and the establishment of the corresponding mechanisms. The results, Ea=57.23 kJ/mol, indicate that under 520K the mass transformation processes (chemical reaction, adsorption – desorption) are the limiting ones the oxidation process. At temperatures higher than 535K the value of the activation energy, Ea=9.39 kJ/mol, emphasizes that limiting are the inner/outer diffusion phenomena. In the temperature range 520K – 535K, when Ea=25 – 42 kJ/mol, the process is carried out after a combined macrokinetic model (mass transfer –transformation).
References
Reuss G., Disteldorf W., Grundler O., Hilt A. (1988) In: Ullmann’s encyclopedia of industrial chemistry, 5th edn, vol. A11,VCH Publishers, Weinheim, chapter 6, 651.
Chrichton B. (2006) In: Informally speaking (newsletter from Perstorp Formox), spring/summer 2006, 2-8, http://www.perstorpformox.com.
S.A.R.K. Deshmukh, M.van Sint Annaland, J.A.M. Kuipers, Appl. Catal. A., 2005, 289, 240.
Qian M., Liauw M.A., Emig G., Appl. Catal. A., 2003, 238, 211.
Părăuşanu V., Corobea M., Muscă G., Economia hidrocarburilor, Ed. Ştiinţifică şi Enciclopedică, Bucureşti, 1980, chapter 4.
Părăuşanu V., Procese tehnologice în industria chimică, Ed. Did. şi Ped., Buc., 1978, chapter 3.
McCormick R.L., Al-Sahali M.B., Alptekin G.O., Applyed Catalysis A., 2002, 226, 129.
Adkins H., Peterson W.R., Journal of American Chemical Society, 1931, 53, 1512.
Soares A.P.V, Portela M.F, Kiennemann A., Catalalysis Reviews, 2004, 47,125.
Wade L.E., Gengelbach R.B., Trumbley J.L., Hallbauer W.L., Encyclopedia of Chemical Technology (Eds: H. Mark, D.F. Othmer, C.G. Overberger, G.T. Seaborg), John Wiley & Sons, New York, 1981, chapter 5.
Andersson A., Hernelind M., Augustsson O., Catalysis Today, 2006, 112, 40.
Soederhjelm E., House M.P., Cruise N., Holmberg J., Bowker M., Bovin J.O., Andersson A., Top Catalysis, Springer Science, 2008, 11, 244.
Santacesaria E., Morbidelli M., Carra S., Chememical Engineering Science, 1981, 36 (5), 909.
Alessandrini G., Cairati L., Foryatti P., Villa P.L., Trifiro F., J. Less - Comm Met., 1977, 54, 373.
Ulukardesler A.H., Atalay S., Atalay F.S., Chemical Engineering Technology, 2010, 33 (1), 167.
Dente M., Collina A., Chemical Ind., 1964, 46, 752.
Bowker M., House M., Alshehri A., Brookes C., Gibson E.K., Wells P.P., Catalysis Structure & Reactivity, 2015, 1 (2), 95.
Khorshidi J., Kalbasi M., The 12th Int. Conf. On Fluidization – New Horizons in Fluidization Engineering, 2007, 615.
Bowker M., Holroyd R., Elliott A., Morrall P., Alouche A., Entwistle C., Toerncrona, A., Catalysis Letters, 2002, 83 (3-4), 165.
Bjoerk V., Depart. Of Chem. Eng., Lund. Univ., Sweden, 2011, 1.
Andersson A., Hernelind M., Augustsson O., Catal Today, 2006, 40, 112.
Soares A.P.V., Portela M.F., Kiennemann A., Catal. Commun, 2001, 2, 159.
Soares A.P.V., Portela M.F., Kiennemann A., Hilaire L., Chem. Eng. Sci., 2003, 58, 1315.
Ma Z.H., Kmiotek S.J., J. Catal, 1988, 109, 132.
Trifiro F., Carbucicchio M., Villa P.L., Hyperfine Interact, 1998, 111.
Sun-Kou M.R., Mendioroz S., Fierro J.L.G., Palacios J.M., Guerro-Ruiz A., J. Mater. Science, 1995, 30, 496.
Boreskov G.K., Kolovertnov G.D., Kefeli L.M., Plyasova L.M., Karakchiev L.G., Mastikhin V.N., Popov V.I., Dzisko V.A., Tarasova D.V., Kinet Katal, 1966, 7, 144.
Okamoto Y., Morikawa F., Oh Hiraki K., Imanaka T., Teranishi S., J. Chem Soc Chem. Comm., 1981, 1018.
Bowker M., Holroyd R., Elliott A., Morrall P., Alouche A., Entwistle C., Toernerona A., Catal. Lett, 2002, 83, 165.
Fagherazzi G., Pernicone N., J Catal, 1970, 16, 321.
Massarotti V., Flor G., Marini A., J. Appl. Cryst, 1981, 14, 64.
Popov B.I., Bibin V.N., Boreskov G.K., Kinet. Katal, 1976, 17, 371.
Buriesci N., Garbassi F., Petrera M., Petrini G., Pernicone N., Stud. Surf. Sci. Catal., Elsevier, Amsterdam, 1980, 6, 115.
Aruanno J., Wanke S., Can. J. Chem. Eng., 1975, 53, 301.
Aruanno J., Wanke S., Can. J. Chem. Eng., 1977, 55, 93.
Dente M., Poppi R., Pasquon J., Chim. Ind., Milan, 1964, 46, 1326.
Wichterlova B., Jiru P., Chem. Prumysl, 1965, 4, 198.
Soares A.P.V., Farinha Portela M., Kiennemann A., Catal. Rev., 2005, 47 (1), 125.
Levenspiel O., Tehnica Reactiilor în Industria Chimică, Ed. Tehnica Bucureşti, 1967, chapter.4.
Calistru C., Leonte C. Tehnologia substantelor anorganice, Ed. Did. si Ped., Buc., 1972, chapter 2.
Satterfield C.N., Sherwood T.K., The Role of Diffusion in Catalysis, Addison-Wesley, Reading, MA, 1963, chapter 3.
G.F. Froment, K.B. Bishoff, Chemical Reactor Analysis and Design, Wiley, New York, 1990, chapter 6.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.