HIGHLY EFFICIENT PURIFICATION OF FINELY DISPERSED OIL CONTAMINATED WATERS BY COAGULATION/FLOCCULATION METHOD AND EFFECTS ON MEMBRANE FILTRATION

Authors

  • Gábor VERÉB Department of Process Engineering, Faculty of Engineering, University of Szeged, Hungary. Corresponding author: verebg@mk.u-szeged.hu. https://orcid.org/0000-0001-9642-1851
  • Lilla NAGY Department of Process Engineering, Faculty of Engineering, University of Szeged, Hungary. Corresponding author: verebg@mk.u-szeged.hu.
  • Szabolcs KERTÉSZ Department of Process Engineering, Faculty of Engineering, University of Szeged, Hungary. Email: kertesz@mk.u-szeged.hu. https://orcid.org/0000-0001-9760-3008
  • Ildikó KOVÁCS Department of Process Engineering, Faculty of Engineering, University of Szeged, Hungary. Corresponding author: verebg@mk.u-szeged.hu. https://orcid.org/0000-0002-9386-6318
  • Cecilia HODÚR Department of Process Engineering, Faculty of Engineering, University of Szeged, Hungary. Email: hodur@mk.u-szeged.hu. https://orcid.org/0000-0002-2028-6304
  • Zsuzsanna LÁSZLÓ Department of Process Engineering, Faculty of Engineering, University of Szeged, Hungary. Email: zsizsu@sol.cc.u-szeged.hu. https://orcid.org/0000-0001-8130-7482

DOI:

https://doi.org/10.24193/subbchem.2017.2.20

Keywords:

oil contaminated waters, coagulation, flocculation, Bopac, membrane filtration

Abstract

In the present study the purification of finely dispersed oil contaminated water (100 ppm crude oil; doil droplets<2 µm) was investigated by using coagulation/flocculation process, membrane separation and combined methods. As coagulant, polyaluminum chloride (Bopac) iron(III) chloride and aluminum(III) chloride, while as flocculant anionic polyelectrolyte were applied. For the membrane separation, hydrophilic polyethersulfone (PES) microfilter (d=0.2 μm) was used, while for the determination of the purification efficiencies turbidity, chemical oxygen demand and extractable oil content were measured. The utilization of Bopac polyaluminum chloride coagulant (by setting Al3+ content to 20 ppm) resulted in high purification efficiency (96.7%). The extra addition of 1 ppm anionic polyelectrolyte lead to the increase in efficiency up to 98.8%. Due to the effective destabilization of oil in water emulsion the flux highly increased during the microfiltration of the emulsion, since both irreversible and reversible membrane resistances were greatly reduced.

References

M. Padaki, R. Surya Murali, M.S. Abdullah, N. Misdan, A. Moslehyani, M.A. Kassim, N. Hilal, A.F. Ismail, Desalination, 2015, 357, 197.

P. Cañizares, F. Martínez, C. Jiménez, C. Sáez, M.A. Rodrigo, Journal of Hazardous Materials, 2008, 151, 44.

M. Gryta, K. Karakulski, A.W. Morawski, Water Research, 2001, 35, 3665.

J. Yin, J. Zhou, Desalination, 2015, 365, 46.

M. Matos, C.F. García, M.A. Suárez, C. Pazos, J. M. Benito, Journal of the Taiwan Institute of Chemical Engineers, 2016, 59, 295.

Y. Hu, Y. Zhu, H. Wang, C. Wang, H. Li, X. Zhang, R. Yuan, Y. Zhao, Chemical Engineering Journal, 2017, 322, 157.

J. Benito, G. Ríos, E. Ortea, E. Fernández, A. Cambiella, C. Pazos, J. Coca, Desalination, 2002, 147, 5.

A.B. Nordvik, J.L. Simmons, K. R. Bitting, A. Lewis, T. Strøm-Kristiansen, Spill Science & Technology Bulletin, 1996, 3, 107.

A.A. Al-Shamrani, A. James, H. Xiao, Water Research, 2002, 36, 1503.

R. Zolfaghari, A. Fakhru’l-Razi, L.C. Abdullah, S.S.E.H. Elnashaie, A. Pendashteh, Separation and Purification Technology, 2016, 170, 377.

C. Wang, A. Alpatova, K.N. McPhedran, M. Gamal El-Din, Journal of Environmental Management, 2015, 160, 254.

E. Bazrafshan, F.K. Mostafapoor, M.M. Soor, A.H. Mahvi, Fresenius Environmental Bulletin, 2012, 21, 2694.

B. Chakrabarty, A.K. Ghoshal, M.K. Purkait, Journal of Membrane Science, 2008, 325, 427.

R.S. Souza, P.S.S. Porto, A.M.A. Pintor, G. Ruphuy, M.F. Costa, R.A.R. Boaventura, V.J.P. Vilar, Chemical Engineering Journal, 2016, 285, 709.

M. Abbasi, A. Salahi, M. Mirfendereski, T. Mohammadi, A. Pak, Desalination, 2010, 252, 113.

M. Cheryan, N. Rajagopalan, Journal of Membrane Science, 1998, 151, 1328.

C. Song, T. Wang, Y. Pan, J. Qiu, Separation and Purification Technology, 2006, 51, 80.

A. Salahi, A. Gheshlaghi, T. Mohammadi, S.S. Madaeni, Desalination, 2010, 262, 235.

H. Shokrkar, A. Salahi, N. Kasiri, T. Mohammadi, Chemical Engineering Research and Design, 2012, 90, 846.

F.L. Hua, Y.F. Tsang, Y.J. Wang, S.Y. Chan, H. Chua, S.N. Sin, Chemical Engineering Journal, 2007, 128, 169.

H. Ohya, J.J. Kim, A. Chinen, M. Aihara, S.I. Semenova, Y. Negishi, O. Mori, M. Yasuda, Journal of Membrane Science, 1998, 145, 1.

S.R.H. Abadi, M.R. Sebzari, M. Hemati, F. Rekabdar, T. Mohammadi, Desalination, 2011, 265, 222.

K. Masoudnia, A. Raisi, A. Aroujalian, M. Fathizadeh, Desalination and Water Treatment, 2014, 55, 901.

Z.L. Kiss, L. Kocsis, G. Keszthelyi-Szabó, C. Hodúr, Z. László, Desalination and Water Treatment, 2014, 55, 3662.

X. Hu, Y. Yu, J. Zhou, Y. Wang, J. Liang, X. Zhang, Q. Chang, L. Song, Journal of Membrane Science, 2015, 476, 200.

J. Lindau, A.S. Jijnsson, Journal of Membrane Science, 1994., 87, 71.

B. Chakrabarty, A.K. Ghoshal, M.K. Purkait, Chemical Engineering Journal, 2010, 165, 447.

N. Moulai-Mostefa, O. Akoum, M. Nedjihoui, L. Ding, M.Y. Jaffrin, Desalination, 2007, 206, 494.

X.S. Yi, S.L. Yu, W. X. Shi, N. Sun, L.M. Jin, S. Wang, B. Zhang, C. Ma, L.P. Sun, Desalination, 2011, 281, 179.

L.Y. Susan, S. Ismail, B.S. Ooi, H. Mustapa, Journal of Water Process Engineering, 2017, 15, 55.

J. Zhang, Q. Xue, X. Pan, Y. Jin, W. Lu, D. Ding, Q. Guo, Chemical Engineering Journal, 2017, 307, 643.

Y.Z. Song, X. Kong, X. Yin, Y. Zhang, C.C. Sun, J.J. Yuan, B. Zhu, L.P. Zhu, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 522, 585.

M.J. Um, S.H. Yoon, C.H. Lee, K.Y. Chung, J.J. Kim, Water Research, 2001, 35, 4095.

Y.G. Park, Desalination, 2002, 147, 43.

S.G. Lehman, L. Liu, Water Research, 2009, 43, 2020.

D. Metcalfe, P. Jarvis, C. Rockey, S. Judd, Separation and Purification Technology, 2016, 163, 173.

Z. Yang, B. Gao, B. Cao, W. Xu, Q. Yue, Separation and Purification Technology, 2011, 80, 59.

B.Y. Gao, Y.B. Chu, Q.Y. Yue, B.J. Wang, S.G. Wang, Journal of Environmental Management, 2005, 76, 143.

C. Hu, H. Liu, J. Qu, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 260, 109.

C. Hu, H. Liu, J. Qu, D. Wang, J. Ru, Environmental Science and Technology, 2006, 40, 325.

W. Chen, J. Peng, Y. Su, L. Zheng, L. Wang, Z. Jiang, Separation and Purification Technology, 2009, 66, 591.

B. Van der Bruggen, Journal of Applied Polymer Science, 2009, 114, 630.

S. Kertész, Z. László, E. Forgács, G. Szabó, C. Hodúr, Desalination and Water Treatment, 2012, 35, 195.

B. Hu, K. Scott, Chemical Engineering Journal, 2008, 136, 210.

Downloads

Published

2017-06-30

How to Cite

VERÉB, G. ., NAGY, L. ., KERTÉSZ, S. ., KOVÁCS, I. ., HODÚR, C. ., & LÁSZLÓ, Z. . (2017). HIGHLY EFFICIENT PURIFICATION OF FINELY DISPERSED OIL CONTAMINATED WATERS BY COAGULATION/FLOCCULATION METHOD AND EFFECTS ON MEMBRANE FILTRATION. Studia Universitatis Babeș-Bolyai Chemia, 62(2), 259–270. https://doi.org/10.24193/subbchem.2017.2.20

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.