METHOD DEVELOPMENT FOR THE ELEMENTAL ANALYSIS OF ORGANIC RICH SOIL SAMPLES BY MICROWAVE PLASMA ATOMIC EMISSION SPECTROMETRY

Authors

  • Csilla Noémi TÓTH Department of Inorganic and Analitycal Chemistry, Agilent Atomic Spectroscopy Partner Laboratory, University of Debrecen, Hungary. Email: toth.csilla.noemi@science.unideb.hu.
  • Sándor HARANGI Department of Ecology, University of Debrecen, Hungary. Corresponding author: toth.csilla.noemi@science.unideb.hu.
  • Anikó KÁROLYI Department of Inorganic and Analitycal Chemistry, University of Debrecen, Hungary. Corresponding author: toth.csilla.noemi@science.unideb.hu.
  • István FÁBIÁN Department of Inorganic and Analytical Chemistry, Agilent Atomic Spectroscopy Partner Laboratory, University of Debrecen, Hungary. Email: ifabian@science.unideb.hu. https://orcid.org/0000-0002-4467-2912
  • Edina BARANYAI Department of Inorganic and Analytical Chemistry, Agilent Atomic Spectroscopy Partner Laboratory, University of Debrecen, Hungary. Email: baranyai.edina@science.unideb.hu. https://orcid.org/0000-0002-9170-194X

DOI:

https://doi.org/10.24193/subbchem.2017.4.41

Keywords:

microwave plasma, inductively coupled plasma, atomic emission spectrometry, soil analysis, sample preparation

Abstract

In this study, the method development is described for the multi elemental determination of organic rich soil reference material (BCR 700) by the new microwave plasma atomic emission spectrometry (MP-AES). Two sample preparation methods were compared (open vessel digestion on a hot plate and closed vessel microwave assisted digestion) for the BCR sample and EDTA extraction was carried out. The recoveries were tested by MP-AES and inductively coupled plasma optical emission spectrometry (ICP-OES) method to investigate whether the more cost-effective nitrogen supplied microwave plasma is appropriate for the elemental determination of digested organic rich soil samples. The BCR 700 sample was not certified for digestion methods yet similar sample pretreatment is present in the literature with which a good agreement was found. Our results also correlated with the values provided in the certification of the BCR 700 material for EDTA extraction. It was found that the microwave plasma is an effective and low-cost alternative of ICP-OES for soil analysis and with the convenient atmospheric digestion even the organic rich soil samples can be prepared prior to the elemental determination. However, the microwave assisted digestion is faster and easier to conduct. The limit of detection values of the measured elements by MP-AES are sufficiently low for the micro element determination of soils (Cd 70 µg kg-1, Cr 5 µg kg-1, Cu 25 µg kg-1, Mn 12.5 µg kg-1, Ni 45 µg kg-1, Pb 220 µg kg-1, Zn 155 µg kg-1).

References

B. Welz and M. Sperling, Eds., Atomic Absorption Spectrometry. Weinheim, Germany: Wiley-VCH Verlag GmbH, 1998.

B. Welz, H. Becker-Ross, S. Florek, and U. Heitmann, High-Resolution Continuum Source AAS: The Better Way to Do Atomic Absorption Spectrometry. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005.

R. Cornelis, Ed., Handbook of elemental speciation: techniques and methodology. Chichester, West Sussex, England ; Hoboken, NJ: Wiley, 2003.

E. Frahm, G.F. Monnier, N.A. Jelinski, E.P. Fleming, B.L. Barber, and J.B. Lambon, Journal of Archaeological Science, 2016, 75,115.

H.P. Broida and M.W. Chapman, Analytical Chemistry, 1938, 30, 2049.

N.S. Ham and A. Walsh, Spectrochimica Acta, 1958,12, 88.

J.A.C. Broekaert and U. Engel, “Microwave-Induced Plasma Systems in Atomic Spectroscopy,” in Encyclopedia of Analytical Chemistry, R.A. Meyers, Ed. Chichester, UK: John Wiley & Sons, Ltd, 2000.

J.A.C. Broekaert and V. Siemens, Spectrochimica Acta Part B Atomic Spectroscopy, 2004, 59, 1823.

S. Greenfield, H.M. Mcgeachin, and P.B. Smith, Talanta,1975, 22, 3.

P.C. Uden, American Chemical Society, and American Chemical Society, Eds., Element-specific chromatographic detection by atomic emission spectroscopy. Washington, DC: American Chemical Society, 1992.

A.T. Zander and G.M. Hieftje, Applied Spectroscopy, 1981, 35, 357.

K.J. Jankowski and E. Reszke, Microwave induced plasma analytical spectrometry. Cambridge: Royal Society of Chemistry, 2010.

D. Beauchemin, J.C. Yves Le Blanc, G.R. Peters, and A.T. Persaud, Analytical Chemistry, 1994, 66, 462.

J.A.C. Broekaert and E. Hywel Evans, “Atomic Spectroscopy,” in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Ed. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2003.

J.A.C. Broekaert, “Plasma optical emission and mass spectrometry,” in Determination of Trace Elements, Z.B. Alfassi, Ed. Weinheim, Germany: Wiley-VCH Verlag GmbH, 1994, pp. 191–251.

J.A.C. Broekaert, N. Bings, C. Prokisch, and M. Seelig, Spectrochimica Acta Part B Atomic Spectroscopy, 1998, 53, 331.

C. Yang, Z. Zhuang, Y. Tu, P. Yang, and X. Wang, “Spectrochimica Acta Part B Atomic Spectroscopy, 1998, 53, 1427.

U. Engel, A. M. Bilgiç, O. Haase, E. Voges, and J.A. Broekaert, Analytical Chemistry, 2000, 72, 193.

N. Ozbek and S. Akman, LWT - Food Science Technology, 2015, 61, 532.

N. Ozbek and S. Akman, Food Chemistry, 2016, 192, 295.

N. Ozbek and S. Akman, Food Chemistry, 2016, 200, 245.

Y. Zhao et al., Spectrochimica Acta Part B Atomic Spectroscopy, 2015, 112, 6.

Y. Lu, F. Zhu, J. Chen, H. Gan, and Y. Guo, Environmental Monitoring and Assessment, 2007, 134, 429.

J.W. Doran and Soil Science Society of America, Eds., Defining soil quality for a sustainable environment: proceedings of a symposium sponsored by Divisions S-3, S-6, and S-2 of the Soil Science Society of America, Division A-5 of the American Society of Agronomy, and the North Central Region Committee on Soil Organic Matter (NCR-59) in Minneapolis, MN, 4-5 November 1992. Madison, Wis: SSSA : American Society of Agronomy, 1994.

C. Trasar-Cepeda, C. Leirs, F. Gil-Sotres, and S. Seoane, Biology and Fertility of Soils, 1997, 26, 100.

G. Várallyay, Cereal Research Communication, 2007, 35, 1277.

G. Várallyay, Agrokém. És Talajt., 2006, 55, 9.

G.D. Bending, C. Putland, F. Rayns, Biology and Fertility of Soils, 2000, 31, 78.

Z. Györi and J. Prokisch, Journal of Agricultural and Food Chem., 1999, 47, 2751.

M.A. Elbagermi, H.G.M. Edwards, and A.I. Alajtal, International Journal of Analytical Chemistry, 2013, 1.

E. Simon et al., Ecological Indicators, 2016, 60, 258.

G. Tyler, Forest Ecology and Management, 2005, 206, 167.

T.-B. Chen et al., Chemosphere, 2005, 60, 542.

R. Ballesta, P. Bueno, J. Rubi, R. Giménez, Open Geosciences, 2010, 2, 441.

I. Massas, C. Ehaliotis, S. Gerontidis, and E. Sarris, Environmental Monitoring and Assessment, 2009, 151,105.

O. Morton-Bermea, E. Hernández-Álvarez, G. González-Hernández, F. Romero, R. Lozano, and L. E. Beramendi-Orosco, Journal of Geochemical Exploration, 2009, 101, 218.

M. Imperato, P. Adamo, D. Naimo, M. Arienzo, D. Stanzione, and P. Violante, Environmental Pollution, 2003, 124, 247.

Z.A. Begum, I.M.M. Rahman, Y. Tate, H. Sawai, T. Maki, and H. Hasegawa, Chemosphere, 2012, 87, 1161.

Downloads

Published

2017-12-29

How to Cite

TÓTH, C. N. ., HARANGI, S. ., KÁROLYI, A. ., FÁBIÁN, I. ., & BARANYAI, E. . (2017). METHOD DEVELOPMENT FOR THE ELEMENTAL ANALYSIS OF ORGANIC RICH SOIL SAMPLES BY MICROWAVE PLASMA ATOMIC EMISSION SPECTROMETRY. Studia Universitatis Babeș-Bolyai Chemia, 62(4, Tome II), 483–494. https://doi.org/10.24193/subbchem.2017.4.41

Issue

Section

Articles

Similar Articles

<< < 9 10 11 12 13 14 15 16 17 18 > >> 

You may also start an advanced similarity search for this article.