CALCIUM HYDROXYAPATITE SUPPORTED COBALT CATALYSTS FOR ETHANOL STEAM REFORMING: EFFECT OF THE INCORPORATION METHOD OF ACTIVE PHASE

Authors

  • Justyna DOBOSZ Department of Nanomaterials Chemistry and Catalysis, Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wrocław, Poland. Corresponding author: m.zawadzki@int.pan.wroc.pl. https://orcid.org/0000-0001-7223-7638
  • Sylwia HULL Division of Chemistry and Technology Fuels, Wrocław University of Technology, Poland. Corresponding author: m.zawadzki@int.pan.wroc.pl. https://orcid.org/0000-0001-7418-260X
  • Mirosław ZAWADZKI Department of Nanomaterials Chemistry and Catalysis, Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wrocław, Poland. Email: m.zawadzki@int.pan.wroc.pl. https://orcid.org/0000-0002-4716-8463

DOI:

https://doi.org/10.24193/subbchem.2018.1.16

Keywords:

Cobalt Catalysts, Hydroxyapatite, Hydrothermal Synthesis, Ethanol Steam Reforming

Abstract

Cobalt catalysts supported on calcium hydroxyapatite (Ca10(PO4)6(OH)2, HAp) and modified with cerium ions, were prepared in two different ways: direct microwave-assisted hydrothermal synthesis or incipient wetness impregnation method and characterized by XRD, TEM, SEM/EDS, FT-IR and Raman spectroscopy, N2 adsorption–desorption, TPD–NH3, TPR–H2 and XPS. The results indicate that Ca2+ ions in the hydroxyapatite lattice are substituted by Co2+ and Ce3+ under hydrothermal conditions while cobalt and cerium species are formed on the HAp surface during support impregnation. Catalytic activity of samples was tested for hydrogen production via ethanol steam reforming (SRE), and it was found that the highest hydrogen yield (over 3,5 mol H2/mol C2H5OH) and the best distribution of products were obtained for the catalyst prepared by the incipient wetness impregnation method. For this catalyst, Co species formed on the HAp surface was easier reducible than Co2+ ions located in the HAp crystal lattice, and surface was characterized by lower acidity.

References

A. Kumar, R. Prasad, Y.C. Sharma, International Journal of Environmental Research, 2014, 4, 203.

C.D. Dave, K.K. Pant, Renewable Energy, 2011, 36, 3195.

B. Bayram, I.I. Soykal, D. von Deak, J.T. Miller, U.S. Ozkan, Journal of Catalysis, 2011, 284, 77.

H. Muroyama, R. Nakase, T. Matsui, K. Eguchi, International Journal of Hydrogen Energy, 2010, 35, 1575.

C.C.R.S. Rossi, C.G. Alonso, O.A.C. Antunes, R. Guirardello, L. Cardozo-Filho, International Journal of Hydrogen Energy, 2009, 34, 323.

T. Nishiguchi, T. Matsumoto, H. Kanai, K. Utani, Y. Matsumura, W.-J. Shen, S. Imamura, Applied Catalysis A-General, 2005, 279, 273.

D.K. Liguras, D.I. Kondarides, X.E. Verykios, Applied Catalysis B- Environmental, 2003, 43, 345.

A.G.M. da Silva, P.A. Robles-Dutenhefner, A. Dias, H.V. Fajardo, A.S.P. Lovón, J.J. Lovón-Quintana, G.P. Valenca, Journal of Sol-Gel Science and Technology, 2013, 67, 273.

A.F. Lucredio, J.D.A. Bellido, A. Zawadzki, E.M. Assaf, Fuel, 2011, 90, 1424.

P.V. Snytnikov, S.D. Badmaev, G.G. Volkova, D.I. Potemkin, V.D. Belyaev, M.M. Zaryanova, Hydrogen Energy, 2012, 37(21), 16388.

A. N. Fatsikostas, X. E. Verykios, Journal of Catalysis, 2004, 225, 439.

R.C. Cerritos, R.F. Ramírez, A.F.A. Alvarado, J.M.M. Rosales, T.V. García, G. Esquivel, Industrial & Engineering Chemistry Research, 2011, 50, 2576.

T. Hou, S. Zhang, T. Xu, W. Cai, Chemical Engineering Journal, 2014, 255, 149.

J.L. Contreras, J. Salmones, J.A. Colin-Luna, L. Nuno, B. Quintana, I. Cordova, B. Zeifert, C. Tapia, G.A. Fuentes, International Journal of Hydrogen Energy, 2014, 39, 18835.

H. Song, L. Zhang, R.B. Watson, D. Braden, U.S. Ozkan, Catalysis Today, 2007, 129, 346.

M.S. Batista, R.K.S. Santos, E.M. Assaf, E.A. Ticianelli, Journal of Power Sources, 2003, 124, 99.

J. Llorca, N. Homes, J. Sales, P. Ramirez de la Piscina, Journal of Catalysis, 2002, 209, 306.

J.L. Contreras, J. Salomones, L.A. Garcia, A. Ponce, B. Zeifert, G.A. Fuentes, Journal of New Materials for Electrochemical Systems, 2008, 11(2), 109.

S.S.Y. Lin, D.H. Kim, S.Y. Ha, Catalysis Letters, 2008, 122(3-4), 295.

B. Banach, A. MacHocki, P. Rybak, A. Denis, W. Grzegorczyk, W. Gac, Catalysis Today, 2011, 176(1), 28.

H. Wang, J.L. Ye, Y. Liu, Y.D. Li, Y.N. Qin, Catalysis Today, 2007, 129, 305.

F. Ma, W. Chu, L. Huang, X. Yu, Y. Wu, Chinese Journal of Catalysis, 2011, 32, 970.

A. Kaddouri, C. Mazzocchia, Catalysis Communications, 2004, 5, 339.

K. Agrawal, G. Singh, D. Puri, S. Prakash, Journal of Minerals and Materials Characterization and Engineering, 2011, 10, 727.

P.K. Tank, K.S. Chudasama, V.S. Thaker, M.J. Joshi, Journal of Nano-particle Research, 2013, 15, 1644.

R.-B. Suen, S.-C. Lin, W.-H. Hsu, Journal of Chromatography A, 2004, 1048, 31.

S. Ogo, A. Onda, K. Yanagisawa, Applied Catalysis A-General, 2008, 348, 129.

K. Elkabouss, M. Kacimi, M. Ziyad, S. Ammar, F. Bozon-Verduraz, Journal of Catalysis, 2004, 226, 16.

J. Ashok, N. Kumar, M. Subrahmanyam, A. Venugopal, Catalysis Letters, 2007, 121, 283.

B. Aellach, A. Ezzamarty, J. Leglise, C. Lamonier, J. F. Lamonier, Catalysis Letters, 2010, 135, 197.

S. Sugiyama, T. Shono, D. Makino, T. Moriga, H. Hayashi, Journal of Catalysis, 2003, 214, 8.

L. Hakim, Z. Yaakob, M. Ismail, W.R.W. Daud, R. Sari, Chemical Papers, 2013, 67, 703.

M. Rakap, S. Özkar, Catalysis Today, 2012, 183, 17.

Y. Han, S. Li, X. Wang, X. Chen, Materials Research Bulletin, 2004, 39, 25.

Z. Stojanović, L. Veselinović, S. Marković, N. Ignjatović, D. Uskoković, Materials and Manufacturing Processes, 2009, 24, 1096.

G.C. Koumoulidis, A.P. Katsoulidis, A.K. Ladavos, P.J. Pomonis, C.C. Trapalis, A.T. Sdoukos, T.C. Vaimakis, Journal of Colloid and Interface Science, 2003, 259, 254.

D. Gopi, S. Nithiya, L. Kavitha, J. M. F. Ferreira, Bulletin of Materials Science, 2012, 35, 1195.

W. Suchanek, Materiały Ceramiczne, 2005, 2, 58.

J. Dobosz, S. Hull, M. Zawadzki, Polish Journal of Chemical Technology, 2016, 18, 59.

Yasukawa, K. Gotoh, H. Tanaka, K. Kondori, Colloid Surface A: Physicochemical and Engineering Aspects, 2012, 393, 53.

P.A. Webb, C. Orr, “Analytical methods in fine particle technology”, Micromeritics Instrument Corporation, Norcross, Georgia, 1997, chapter 3.

R.R. Sheha, Journal of Colloid and Interface Science, 2007, 310, 18.

S.M. Sallam, K.M. Tohami, A.M. Sallam, L.I. Abo Salem, F.A. Mohamed, J. Biophysical Chemistry, 2012, 3, 278.

N. Devi Ravi, R. Balu, T.S. Sampath Kumar, Journal of the American Ceramic Society, 2012, 95, 2700.

V. Aina, G. Lusvardi, B. Annaz, I.R. Gibson, F.E. Imrie, G. Malavasi, L. Menabue, G. Cerrato, G. Martra, Journal of Materials Science: Materials in Medicine, 2013, 529-530, 88.

S. Farhadi, K. Pourzare, S. Sadeghinejad, Journal of Nanostructure in Chemistry, 2013, 3, 1.

E. Kramer, E. Itzkowitz, M. Wei, Ceramics International, 2014, 40, 13480.

L. Xue, C. Zhang, H. He, Y. Teraoka, Applied Catalysis B-Environmental, 2007, 75,167.

R. Asuvathraman, K.I. Gnanasekar, P.C. Clinsha, T.R. Ravindran, K.V. Govindan Kutty, Ceramics International, 2015, 41, 3731.

E. Bêche, P. Charvin, D. Perarnau, S. Abanades, G. Flamant, Surface and Interface Analysis, 2008, 40, 264.

S. Tuti, F. Pepe, Catalysis Letters, 2008, 122, 196.

H. Wang, J.L. Ye, Y. Liu, Y.D. Li, Y.N. Qin, Catalysis Today, 2007, 129, 305.

S.R. Garcia, J.M. Assaf, Modern Research in Catalysis, 2012, 1, 52.

S. Song, B. Tan, U.S. Ozkan, Catalysis Letters, 2009, 132, 422.

Downloads

Published

2018-03-30

How to Cite

DOBOSZ, J. ., HULL, S. ., & ZAWADZKI, M. . (2018). CALCIUM HYDROXYAPATITE SUPPORTED COBALT CATALYSTS FOR ETHANOL STEAM REFORMING: EFFECT OF THE INCORPORATION METHOD OF ACTIVE PHASE. Studia Universitatis Babeș-Bolyai Chemia, 63(1), 215–237. https://doi.org/10.24193/subbchem.2018.1.16

Issue

Section

Articles

Similar Articles

<< < 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.