MICROWAVE IRRADIATION EFFECT ON POLYPHENOL CONTENT AND ANTIOXIDANT ACTIVITY OF BASIL

Authors

  • Ildiko LUNG Department for the Physics of Nanostructured Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania. Email: ildiko.lung@itim-cj.ro. https://orcid.org/0000-0003-4677-4602
  • Maria-Loredana SORAN Department for the Physics of Nanostructured Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania. Email: loredana.soran@itim-cj.ro. https://orcid.org/0000-0003-3770-9702
  • Ocsana OPRIŞ Department for the Physics of Nanostructured Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania. Email: ocsana.opris@itim-cj.ro. https://orcid.org/0000-0002-9765-2739
  • Manuela Cristina STAN National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj-Napoca, Romania. Email: manuela.stan@itim-cj.ro. https://orcid.org/0000-0002-0883-4873
  • Constantin BELE Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania. Email: cbele2002@yahoo.com.

DOI:

https://doi.org/10.24193/subbchem.2018.3.07

Keywords:

polyphenols, basil, microwave influence, antioxidant activity

Abstract

This study investigates the influence of microwave field derived from wireless router and mobile telephony sources on polyphenol content and antioxidant activity of basil. The total phenolic content of basil extracts was determined by the Folin-Ciocalteu method. The amount of polyphenolic compounds in basil plants exposed to microwave irradiation was higher compared to control plants. Extracts of irradiated basil exhibit higher antioxidant activity than extracts of control plants, as evidenced by the three methods of determination used: 2,2-diphenylpicrylhydrazyl radical scavenging activity, oxygen radical absorbance capacity and Trolox equivalent antioxidant capacity assays. It was determined that microwave irradiation increased both antioxidant activity and polyphenol content of basil extracts. In addition, hydroalcoholic extracts obtained from basil plants exposed to GSM microwaves showed higher antioxidant activity than hydroalcoholic extracts of plants exposed to WLAN microwaves.

References

K.A. Ross, T. Beta, S.D. Arntfield, Food Chemistry, 2009, 113, 336.

S. Nyiredy, Journal of Chromatography B, 2004, 812, 35.

P. Mattila, J.J. Kumpulainen, Journal of Agricultural and Food Chemistry, 2002, 50, 3660.

M. Kivilompolo, T. Hyotylainen, Journal of Chromatography A, 2009, 1216, 892.

R. Japon-Lujan, J.M. Luque-Rodriguez, M.D. Luque de Castro, Journal of Chromatography A, 2006, 1108, 76.

R.M. Alonso-Salces, A. Barranco, E. Corta, L.A. Berrueta, B. Gallo, F. Vicente, Talanta, 2005, 65, 654.

T.S. Ballard, P. Mallikarjunan, K. Zhou, S. O’Keefe, Food Chemistry, 2010, 120, 1185.

X. Jun, S. Deji, Z. Shou, L. Bingbing, L. Ye, Z. Rui, International Journal of Pharmaceutics, 2009, 382, 139.

E.M. Silva, H. Rogez, Y. Larondelle, Separation and Purification Technology, 2007, 55, 381.

G.A. Akowuah, Z. Ismail, I. Norhayati, A. Sadikun, Food Chemistry, 2005, 93, 311.

S. Albu, E. Joyce, L. Paniwnyk, J.P. Lorimer, T.J. Mason, Ultrasonics Sonochemistry, 2004, 11, 261.

R.J. Grubesic, J. Vukovic, D. Kremer, S. Vladimir-Knezevic, Journal of Pharmaceutical and Biomedical Analysis, 2005, 39, 837.

O. Yesil-Celiktas, P. Nartop, A. Gurel, E. Bedir, F. Vardar-Sukan, Journal of Plant Physiology, 2007, 164, 1536.

A. Figueirinha, A. Paranhos, J.J. Perez-Alonso, C. Santos-Buelga, M.T. Batista Food Chemistry, 2008, 110, 718.

M.T. Baratta, H.J.D. Dorman, S.G. Deans, A.C. Figueiredo, J.G. Barroso, G. Ruberto, Flavour and Fragrance Journal, 1998, 13, 234.

R.N. Bennett, R.M. Wallsgrove, New Phytologist, 1994, 127, 617.

D.K. Kliebenstein, Plant Cell & Environment, 2004, 27, 675.

A. Vashisth, S. Nagarajan, Bioelectromagnetics, 2008, 29, 571.

D. Roux, A. Vian, S. Girard, P. Bonnet, F. Paladian, E. Davies, G. Ledoigt Planta, 2008, 227, 883.

A. Vian, D. Roux, S. Girard, P. Bonnet, F. Paladian, E. Davies, G..Ledoigt, Plant Signaling & Behavior, 2006, 1, 67.

W. Stankiewicz, M.P. Dabrowski, R. Kubacki, E. Sobiczewska, S. Szmigielski Electromagnetic Biology and Medicine, 2006, 25, 45.

I. Lung, M.L. Soran, C. Tudoran, C. Marutoiu, Central European Journal of Chemistry, 2013, 11, 535.

I. Lung, M.L. Soran, M. Stan, D. Podar, Advances in Research, 2013, 1, 1-10.

T. Katsube, H. Tabata, Y. Ohta, Y. Yamasaki, E. Anuurad, K. Shiwaku, Y. Yamane, Journal of Agricultural and Food Chemistry, 2004, 52, 2391.

N. Pellegrini, M. Serafini, B. Colombi, D. Del Rio, S. Salvatore, M. Bianchi, F. Brighenti, Journal of Nutrition, 2003, 133, 2812.

H.B. Li, C.C. Wong, K.W. Cheng, F. Chen, LWT - Food Science and Technology, 2008, 41, 385.

E. Surducan, V. Surducan, A. Halmagyi, “Process and installation for stimulating plant development in microwaves field” Romanian Patent. RO 125068B1/2012.

K. Slinkard, V.L. Singleton, American Journal of Enology and Viticulture, 1977, 28, 49.

W. Brand-Williams, M.E. Cuvelier, C. Berset, LWT - Food Science and Technology, 1995, 28, 25.

M.B. Arnao, A. Cano, J.F. Alcolea, M. Acosta, Phytochemical Analysis, 2001, 12, 138.

D. Huang, B. Ou, M. Hampsch-Woodill, J.A. Flanagan, R.L. Prior, Journal of Agricultural and Food Chemistry, 2002, 50, 4437.

Downloads

Published

2018-09-28

How to Cite

LUNG, I. ., SORAN, M.-L. ., OPRIŞ, O. ., STAN, M. C. ., & BELE, C. . (2018). MICROWAVE IRRADIATION EFFECT ON POLYPHENOL CONTENT AND ANTIOXIDANT ACTIVITY OF BASIL. Studia Universitatis Babeș-Bolyai Chemia, 63(3), 87–94. https://doi.org/10.24193/subbchem.2018.3.07

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 19 20 21 22 23 24 25 26 > >> 

You may also start an advanced similarity search for this article.