MATHEMATICAL MODELLING AND PREDICTION OF CONGO RED ADSORPTION ON CHERRY STONES ACTIVATED CARBON

Authors

  • Andrei SIMION Department of Food and Chemical Engineering, Faculty of Engineering, “Vasile Alecsandri” University, Bacău, Romania. Email: asimion@ub.ro. https://orcid.org/0000-0001-5395-8552
  • Cristina GRIGORAȘ Department of Food and Chemical Engineering, Faculty of Engineering, “Vasile Alecsandri” University, Bacău, Romania. Email: cristina.grigoras@ub.ro.
  • Lidia FAVIER Université de Rennes, École Nationale Supérieure de Chimie de Rennes (CNRS), France. Email: lidia.favier@ensc-rennes.fr. https://orcid.org/0000-0002-7864-0062
  • Lucian GAVRILĂ Department of Food and Chemical Engineering, Faculty of Engineering, “Vasile Alecsandri” University, Bacău, Romania. Email: lgavrila@ub.ro. https://orcid.org/0000-0003-4833-7545

DOI:

https://doi.org/10.24193/subbchem.2019.2.12

Keywords:

Adsorption, Artificial Neural Network, cherry stone, Congo Red, mathematical modelling, Response Surface Methodology, water treatment

Abstract

The present paper was aimed to establish mathematical models useful to reduce the time required to discover the appropriate adsorption conditions of Congo Red (an intensively used organic dye) on an activated carbon prepared from cherry stones through calcination. To this purpose, various values of three parameters known as influencing the process, namely dye initial concentration (200 mg/L to 1000 mg/L), pH (2 to 12) and contact time (10 to 180 minutes) between the adsorbent and the adsorbate were variated. The recorded results of the adsorption process were used as data for Response Surface Methodology and Artificial Neural Network and several mathematical equations were generated. The conducted statistical analyses revealed that these equations can accurately express the Congo Red elimination from aqueous solutions. Moreover, the developed procedure is able to predict the process evolution in different conditions than those experimentally tested.

References

N. Ribeiro de Mattos; C. Rodrigues de Oliveira; L.G. Brogliato Camargo; R.S. Rocha da Silva; R. Lassarote Lavall; Sep. Purif. Technol., 2019, 209, 806-814

H. Park; J.-H. Hwang; J.-S. Han; B.-S. Lee; Y.-B. Kim; K.-M. Joo; M.-S. Choi; S.-A. Cho; B.-H. Kim; K.-M. Lim; Food Chem. Toxicol., 2018, 121, 360-366

C. Goebel; T.L. Diepgen; B. Blomeke; A.A. Gaspari; A. Schnuch; A. Fuchs; K. Schlotmann; M. Krasteva; I. Kimber; Regul. Toxicol. Pharm., 2018, 95, 124-132

K.B. Tan; M. Vakili; B.A. Horri; P.E. Poh; A.Z. Abdullah; B. Salamatinia; Sep. Purif. Technol., 2015, 150, 229-242

Y. Gao; S.-Q. Deng; X. Jin; S.-L. Cai; S.-R. Zheng; W.-G. Zhang; Chem. Eng. J., 2019, 357, 129-139

D. Jiang; M. Chen; H. Wang; G. Zeng; D. Huang; M. Cheng; Y. Liu; W. Xue; Z. Wang; Coordin. Chem. Rev., 2019, 380, 471-483

Z. Jia; Z. Li; T. Ni; Z. Li; J. Mol. Liq., 2017, 229, 285-292

A. Oussalah; A. Boukerroui; A. Aichour; B. Djellouli; Int. J. Biol. Macromol., 2019, 124, 854-862

G.L. Dotto; J.M.N. Santos; E.H. Tanabe; D.A. Bertuol; E.L. Foletto; E.C. Lima; F.A. Pavan; J. Clean. Prod., 2017, 144, 120-129

H. Ma; A. Kong; Y. Li; B. He; Y. Song; J. Li; J. Clean. Prod., 2019, 214, 89-94

I. Chaari; E. Fakhfakh; M. Medhioub; F. Jamoussi; J. Mol. Struct., 2019, 1179, 672-677

W. Hamza; N. Dammak; H.B. Hadjltaief; M. Eloussaief; M. Benzina; Ecotox. Environ. Safe., 2018, 163, 365-371

M. Tanzifi; M.T. Yaraki; M. Karami; S. Karimi; A.D. Kiadehi; K. Karimipour; S. Wang; J. Colloid. Interf. Sci., 2018, 519, 154-173

A.M. Herrera-Gonzalez; M. Caldera-Villalobos; A.-A. Pelaez-Cid; J. Environ. Manage., 2019, 234, 237-244

D.P. Dutta; S. Nath; J. Mol. Liq., 2018, 269, 140-151

J. Mo; O. Yang; N. Zhang; W. Zhang; Y. Zheng; Z. Zhang; J. Environ. Manage., 2018, 227, 395-405

K.A. Adegoke; O.S. Bello; Water Res. Ind., 2015, 12, 8-24

K.H. Toumi; M. Bergaoui; M. Khalfaoui; Y. Benguerba; A. Erto; G.L. Dotto; A. Amrane; S. Nacef; B. Ernst; J. Mol. Liq., 2018, 271, 40-50

M. Wakkel; B. Khiari; F. Zagrouba; J. Taiwan. Inst. Chem. E., 2019, 96, 439-452

N.K. Soliman; A.F. Moustafa; A.A. Aoud; K.S.A. Halim; J. Mater. Res. Technol., 2018, https://doi.org/10.1016/j.jmrt.2018.12.010

X. Wen; H. Liu; L. Zhang; J. Zhang; C. Fu; X. Shi; X. Chen; E. Mijowska; M.-J. Chen; D.-Y. Wang; Bioresource Tehnol., 2019, 272, 92-98

S. Dawwod; T.K. Sen; J. Chem. Proc. Eng., 2014, 1, 1-11

T. Ngulube; J.R. Gumbo; V. Masindi; A. Maity; J. Environ. Manage., 2017, 191, 35-57

K. Vikrant; B.S. Giri; N. Raza; K. Roy; K.-H. Kin; B.N. Rai; R.S. Singh; Bioresource Technol., 2018, 253, 355-367

M.C. Collivignarelli; A. Abba; M.C. Miino; S. Damiani; J. Environ. Manage., 2019, 236, 727-745

E. Li; B. Mu; Y. Yang; Bioresource Technol., 2019, 277, 157-170

H.N. Tran; S.-J. You; A. Hosseini-Badegharaei; H.-P. Chao; Water Res., 2017, 120, 88-116

C.X.-H. Su; L.W. Low; T.T. Teng; Y.S. Wong; J. Environ. Chem. Eng., 2016, 4, 3618-3631.

M.M. Hassan; C.M. Carr; Chemosphere, 2018, 209, 201-219

C.R. Holkar; A.J. Jadhav; D.V. Pinjari; N.M. Mahamuni; A.B. Pandit; J. Environ. Manage., 2016, 182, 351-366

L.Y. Jun; L.S. Yon; N.M. Mubarak; C.H. Bing; S. Pan; M.K. Danquah; E.C. Abdullah; M. Khalid; J. Environ. Chem. Eng., 2019, 7, 1-14

M.A. Abdel-Fatah; Ain Shams Eng. J., 2018, 9, 3077-3092

M.-H. Zhang; H. Dong; L. Zhao; D.-E. Wang; D. Meng; Sci. Total Environ., 2019, 670, 110-121

A. Talaiekhozani, S. Rezania; J. Water Process Eng., 2017, 19, 312-321

P.K. Gautam; A. Singh; K. Misra; A.K. Sahoo; S.K. Samanta; J. Environ. Manage., 2019, 231, 734-748

S. Karimifard; M.R.A. Moghaddam; Sci. Total Environ., 2018, 640-641, 772-797

S. Khamparia; D. Jaspal; J. Environ. Manage., 2017, 201, 316-326

A.K.S. Priya; B.S. Kaith; N. Sharma; J.K. Bhatia; V. Tanwar; S. Panchal; S. Bajaj; Int. J. of. Biol. Macromol., 2019, 124, 331-345

A.M. Ghaedi; A. Vafaei; Adv. Colloid Interfac., 2017, 245, 20-39

M.R. Gadekar; M.M. Ahammed; J. Environ. Manage., 2019, 231, 241-248

A. Simion; C.G. Grigoraş; A. Chiriac; N.C. Tâmpu; L. Gavrilă; Environ. Eng. Manag. J., 2018, 17, 771-781

A.I. Simion; I. Ioniţă; C.G. Grigoraş; L. Favier-Teodorescu; L. Gavrilă; Environ. Eng. Manag. J., 2015, 14, 277-288

S. Kaur; S. Rani; K. Mahajan; J. Chem., 2013, http://dx.doi.org/10.1155/2013/628582

C. Tian; C. Feng; M. Wei; Y. Wu; Chemosphere, 2018, 208, 476-483.

Downloads

Published

2019-06-03

How to Cite

SIMION, A. ., GRIGORAȘ, C. ., FAVIER, L. ., & GAVRILĂ, L. . (2019). MATHEMATICAL MODELLING AND PREDICTION OF CONGO RED ADSORPTION ON CHERRY STONES ACTIVATED CARBON. Studia Universitatis Babeș-Bolyai Chemia, 64(2), 139–157. https://doi.org/10.24193/subbchem.2019.2.12

Issue

Section

Articles

Similar Articles

<< < 28 29 30 31 32 33 34 35 36 37 > >> 

You may also start an advanced similarity search for this article.