MAXIMIZING ENERGY SAVINGS ATTAINABLE BY DYNAMIC INTENSIFICATION OF BINARY DISTILLATION
DOI:
https://doi.org/10.24193/subbchem.2019.2.30Keywords:
process intensification; dynamic intensification; distillation; energy efficiency, optimizationAbstract
Dynamic intensification of distillation columns has shown significant promise in achieving energy savings with minimal investment in new equipment. Conceptually, it entails making a desired product as a blend of two auxiliary products (one with higher purity, the other with lower purity, but both having lower energy consumption). Practically, dynamic intensification means periodically switching between two operating states corresponding to the aforementioned products. Past work has relied on ad-hoc choices of auxiliary products. In this paper, we introduce a new optimization framework for selecting auxiliary products for dynamic intensification. An extensive case study concerning the separation of a methanol/propanol mixture is then presented. We show that optimizing the choice of auxiliary products can lead to significant energy savings (more than 3.6% compared to a column operated at steady state) derived from dynamic intensification.
References
M. Baldea, P. Daoutidis, “Dynamics and Nonlinear Control of Integrated Process Systems”, Cambridge University Press, Cambridge, UK, 2012.
J. L. Humphrey, Chemical Engineering Progress, 1995, 91 (10).
A. A. Kiss, “Advanced Distillation Technologies”, John Wiley & Sons, Ltd, Chichester, UK, 2013. https://doi.org/10.1002/9781118543702.
J. L. Humphrey, A. F. Seibert, R. A. Koort, Separation Technologies: Advances and Priorities, Washington DC, 1991.
S. S. Jogwar, M. Baldea, P. Daoutidis, Computer & Chemical Engineering, 2010, 34 (9), 1457–1466. https://doi.org/10.1016/j.compchemeng.2010.02.005.
M. M. Donahue, B. J. Roach, J. J. Downs, T. Blevins, M. Baldea, R. B. Eldridge, Chemical Engineering and Process: Process Intensification, 2016, 107, 106–115. https://doi.org/10.1016/j.cep.2016.05.013.
R. C. Pattison, A. M. Gupta, M. Baldea, AIChE Journal, 2016, 62 (3), 704–716. https://doi.org/10.1002/aic.15060.
M. R. Cannon, Industrial & Engineering Chemistry, 1961, 53 (8), 629. https://doi.org/10.1021/ie50620a021.
B. V. Maleta, A. Shevchenko, O. Bedryk, A. A. Kiss, AIChE Journal, 2015, 61 (8), 2581–2591. https://doi.org/10.1002/aic.14827.
L. Yan, T. F. Edgar, M. Baldea, AIChE Journal, 2019, 65 (4), 1162-1172. https://doi.org/10.1002/aic.16506.
L. Yan, T. F. Edgar, M. Baldea, Industrial & Engineering Chemistry Research, 2019, 58 (15), 5830-5837. https://doi.org/10.1021/acs.iecr.8b04852.
E. W. Jacobsen, S. Skogestad, AIChE Journal, 1991, 37 (4), 499–511. https://doi.org/10.1002/aic.690370404.
A. Koggersbøl, T. R. Andersen, J. Bagterp, S. B. Jørgensen, Computer & Chemical Engineering, 1996, 20 (96), S835–S840. https://doi.org/10.1016/0098-1354(96)00147-0.
Aspen Technology Aspen Plus, www.aspentech.com.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.