MAXIMIZING ENERGY SAVINGS ATTAINABLE BY DYNAMIC INTENSIFICATION OF BINARY DISTILLATION

Authors

DOI:

https://doi.org/10.24193/subbchem.2019.2.30

Keywords:

process intensification; dynamic intensification; distillation; energy efficiency, optimization

Abstract

Dynamic intensification of distillation columns has shown significant promise in achieving energy savings with minimal investment in new equipment. Conceptually, it entails making a desired product as a blend of two auxiliary products (one with higher purity, the other with lower purity, but both having lower energy consumption). Practically, dynamic intensification means periodically switching between two operating states corresponding to the aforementioned products. Past work has relied on ad-hoc choices of auxiliary products. In this paper, we introduce a new optimization framework for selecting auxiliary products for dynamic intensification. An extensive case study concerning the separation of a methanol/propanol mixture is then presented. We show that optimizing the choice of auxiliary products can lead to significant energy savings (more than 3.6% compared to a column operated at steady state) derived from dynamic intensification.

References

M. Baldea, P. Daoutidis, “Dynamics and Nonlinear Control of Integrated Process Systems”, Cambridge University Press, Cambridge, UK, 2012.

J. L. Humphrey, Chemical Engineering Progress, 1995, 91 (10).

A. A. Kiss, “Advanced Distillation Technologies”, John Wiley & Sons, Ltd, Chichester, UK, 2013. https://doi.org/10.1002/9781118543702.

J. L. Humphrey, A. F. Seibert, R. A. Koort, Separation Technologies: Advances and Priorities, Washington DC, 1991.

S. S. Jogwar, M. Baldea, P. Daoutidis, Computer & Chemical Engineering, 2010, 34 (9), 1457–1466. https://doi.org/10.1016/j.compchemeng.2010.02.005.

M. M. Donahue, B. J. Roach, J. J. Downs, T. Blevins, M. Baldea, R. B. Eldridge, Chemical Engineering and Process: Process Intensification, 2016, 107, 106–115. https://doi.org/10.1016/j.cep.2016.05.013.

R. C. Pattison, A. M. Gupta, M. Baldea, AIChE Journal, 2016, 62 (3), 704–716. https://doi.org/10.1002/aic.15060.

M. R. Cannon, Industrial & Engineering Chemistry, 1961, 53 (8), 629. https://doi.org/10.1021/ie50620a021.

B. V. Maleta, A. Shevchenko, O. Bedryk, A. A. Kiss, AIChE Journal, 2015, 61 (8), 2581–2591. https://doi.org/10.1002/aic.14827.

L. Yan, T. F. Edgar, M. Baldea, AIChE Journal, 2019, 65 (4), 1162-1172. https://doi.org/10.1002/aic.16506.

L. Yan, T. F. Edgar, M. Baldea, Industrial & Engineering Chemistry Research, 2019, 58 (15), 5830-5837. https://doi.org/10.1021/acs.iecr.8b04852.

E. W. Jacobsen, S. Skogestad, AIChE Journal, 1991, 37 (4), 499–511. https://doi.org/10.1002/aic.690370404.

A. Koggersbøl, T. R. Andersen, J. Bagterp, S. B. Jørgensen, Computer & Chemical Engineering, 1996, 20 (96), S835–S840. https://doi.org/10.1016/0098-1354(96)00147-0.

Aspen Technology Aspen Plus, www.aspentech.com.

Downloads

Published

2019-06-28

How to Cite

YAN, L. ., EDGAR, T. F. ., & BALDEA, M. . (2019). MAXIMIZING ENERGY SAVINGS ATTAINABLE BY DYNAMIC INTENSIFICATION OF BINARY DISTILLATION. Studia Universitatis Babeș-Bolyai Chemia, 64(2), 357–369. https://doi.org/10.24193/subbchem.2019.2.30

Issue

Section

Articles

Similar Articles

<< < 16 17 18 19 20 21 22 23 24 25 > >> 

You may also start an advanced similarity search for this article.