Novel Tetrazole and 1,3,4-Oxadiazole Derivatives Synthesis, Molecular Docking, Adme, Potential Activator for Rabbit Muscle Pyruvate Kinase
DOI:
https://doi.org/10.24193/subbchem.2024.1.06Keywords:
Rabbit Muscle Pyruvate Kinase, Tetrazole, 1,3,4-oxadiazoleAbstract
The activation of muscle pyruvate kinase (PK) increases the conversion of phosphoenolpyruvate (PEP) to pyruvate, which results in the production of ATP. This is critical for supplying the energy needed for muscle contraction. In this study, we synthesized 1,4-dihydropyridine/pyridine compounds bearing tetrazole and 1,3,4-oxadiazole groups by using Hantzsch method and characterized by FT-IR spectroscopy, elemental analysis, and 1H and 13C NMR and studied PK activation, ADME, and molecular docking. The studies revealed that all original synthesized compounds activated PK and AC50 (half-maximal activating concentration) values of the compounds were extremely effective (1.30 µM to 14.65 µM).
References
V. Gupta; R.N.K. Bamezai; Protein Sci., 2010, 19, 2031-2044.
S. Strumilo; A. Tylicki; Zh. Evol. Biokhim. Fiziol., 2015, 51,103-7.
M. Alquraishi; D.L. Puckett; D.S. Alani; A.S. Humidat; V.D. Frankel; D.R. Donohoe; J. Whelan; A. Bettaieb; Free Radic. Biol. Med., 2019, 143,176-192.
D. Prasanta; J.Y. Son; A. Kundu; K. S. Kim; Y. Lee; K. Yoon; S. Yoon; B.M. Lee; K.T. Nam; and H.S. Kim. N. Kim; Int. J. Mol. Sci., 2019, 20, 5622.
P. Bianchi; E. Fermo; B. Glader; Am. J. Hematol., 2019, 94,149-161.
S. Deane; B. E. Phillips; C. R. G. Willis; D.J. Wilkinson; K. Smith; N. Higashitani; J. P. Williams; N. J. Szewczyk; P.J. Atherton; A. Higashitani; T. Etheridge; GeroScience, 2023, 45, 1271-1287.
J. Y. Jan; D.Kim; N. D. Kim; Biomedicines; 2023, 11 (6), 1635.
G.D. Lopaschuk; Q.G. Karwi; R. Tian; A.R. Wende; E.D. Abel; Circ. Res., 2021, 128,1487-1513.
W.J. Israelsen; M.G.V. Heiden; Semin. Cell. Dev. Biol., 2015, 43, 43-51.
J. Burns; G. Manda; Int. J. Mol. Sci., 2017, 18, 2755-2783.
K. Zahra; T. Dey; Ashish, S.P. Mishra; U. Pandey; Front. Oncol., 2020, 10, 159.
C.X. Wei; M. Bian; G.H. Gong; Molecules, 2015, 20, 5528-5553.
C.G. Neochoritis; T. Zhao; A. Dömling; Chem. Rev., 2019, 119, 1970-2042.
M. Benz; T.M. Klapötke; T. Lenz; J. Stierstorfer; Chem. A Eur. J. l, 2022, 28, 10.
M. Benz; T.M. Klapötke; J. Stierstorfer; M. Voggenreiter; ACS Appl. Eng. Mat., 2023, 1, 3-6.
M. Benz; T.M. Klapötke; J. Stierstorfer; Chempluschem., 2022, 87, 9.
R.Z. Zhang; R.X. Zhang; S. Wang; C. Xu; W. Guan; M. Wang; Angew. Chem Int. Ed., 2022, 61, 1.
D.R. Mishra; B.S. Panda; M.A. Ahemad; S. Nayak; S. Mohapatra; ChemistrySelect, 2022, 7, 46.
F. Celik; M. Arslan; M.O. Kaya; E. Yavuz; N. Gencer; O. Arslan; Artif Cells Nanomed B., 2014, 42, 58-62.
S.J. Wittenberger, B.G. Donner; J. Org. Chem., 1993, 58, 4139-4141.
S. L. Ramos; O.J. Cardoso; Curr. Org. Chem., 2021, 25, 388-403.
M.A.E.A.A.A. El‐Remaily; O.M. Elhady; Appl Organomet Chem., 2019, 33, 8.
M. Luczynski; A. Kudelko; Appl. Sci., 2022, 12, 3756.
J.J. Wang; W. Sun; W.D. Jia; M. Bian; L.J. Yu; J. Enzyme. Inhib. Med. Chem., 2022, 37, 2304-2319.
K.D. Patel; S.M. Prajapati; S.N. Panchal; H.D. Patel; Synth. Commun., 2014, 44, 1859-1875.
D. Fischer; T.M. Klapötke; J. Stierstorfer; Angew. Chem. Int. Edit., 2015, 54, 10299-10302.
K. Ferydoon; M. M. Seyed; B.D. Samaneh; A. Z. Mohammad; Medicon Pharm. Sci., 2022, 2, 04-10.
L. L. De Lócio; A. P. S. Do Nascimento; M.B. Santos; J. N.NS. Gomes; Y.M.S. De Medeiros; S.L. Albino; V.L. Dos Santos; R.O. De Moura; Curr Pharm Des., 2022, 28, 1373-1388.
T. Ni; X. Chi; F. Xie; L. Li; H. Wu; Y. Hao; X. Wang; D. Zhang; Y. Jiang; Eur.
J. Med. Chem., 2023, 246,115007.
S. DAS; A. Ghosh; P. Upadhyay; S. Sarker; M. Bhattacharjee;P. Gupta; A. Adhikary; bioRxiv, 2022, 1-10.
T. Al-Warhi; A. A. Al-Karmalawy; A. A.; Elmaaty, M. A. Alshubramy; M. Abdel-Motaal; T.A. Majrashi; M. Asem; A. Nabil, W. M.Eldehna, M. Sharaky; Enzyme. Inhib. Med. Chem., 2023, 38,176-191.
B. Yadagiri; S. Gurrala; R. Bantu; L. Nagarapu; S. Polepalli; G. Srujana; N Jain; Bioorg. Med. Chem. Lett., 2015, 25, 2220-2224.
S. Bajaj; V. Asati; J. Singh; P.P. Roy; Eur. J. Med. Chem., 2015, 97, 124-141.
D. Kumar; S. Sundaree; E.O. Johnson; K. Shah; Bioorg. Med. Chem. Lett., 2009, 19, 4492-4494.
B. Vishwanathan; B.M. Gurupadayya; K. S. Venkata; Bangladesh J. Pharmacol., 2016, 11, 67-74.
M. Bhatt; Int. J. of Pharm. Sci. and Res., 2010, 1, 172-179.
K. Rajeev; R. Meenakshi; M. S. Y. Prabodh; Int. J. of Pharm. Innov., 2011, 37-55.
İ.H. Ciğerci; Pak. J. Agric. Sci., 2022, 59, 207-211.
M. G. Mohamed; M. M. Samy; T.H. Mansoure; S.U. Sharma; M.S. Tsai; J. H. Chen; J. T. Lee; S. W. Kuo; ACS Appl. Energy Mater., 2022, 5, 3677-3688.
F. G. De Felice; V. C. Soares; S. T. Ferreira; J. Biochem.,1999, 260,163-169.
H. Buc; F. Demaugre; J.P. Leroux; BBRC, 1978, 85, 2, 774-779.
A. Veith; B. Moorthy; Curr Opin Toxicol., 2018, 7, 44-51.
M.O. Kaya; T. Demirci; Ü. Çalışır; O. Özdemir; Y. Kaya; M. Arslan. Res Chem Intermed; 2024, 50, 437-463.
M.J. Walsh; K.R. Brimacombe; H. Veith; J.M. Bougie; T. Daniel; W. Leister; L.C: Cantley; W.J. Israelsen; M.G. Vander Heiden; M. Shen; D.S. Auld; C.J. Thomas; M.B. Boxer. Bioorg. Med. Chem. Lett., 2011, 21, 6322-6327.
D. Anastasiou; Y. Yu; W.J. Israelsen; J.K. Jiang; M.B. Boxer; B.S. Hong; W. Tempel; S. Dimov; M. Shen; A. Jha; H. Yang; K.R. Mattaini; C.M. Metallo; B.P. Fiske, K.D. Courtney; S. Malstrom; T.M. Khan; C. Kung; A.P. Skoumbourdis; H. Veith; Southall N; M.J Walsh; K.R. Brimacombe; W. Leister; S.Y. Lunt; Z.R. Johnson; K.E. Yen; K. Kunii; S.M. Davidson; H.R. Christofk; C.P. Austin; J. Inglese; M.H. Harris; J.M. Asara; G. Stephanopoulos; F.G: Salituro; S. Jin; L. Dang; D.S. Auld, H.W. Park, L.C. Cantley; C.J. Thomas; M.G. Vander Heiden. Nat. Chem. Biol., 2012, 8, 839-847.
Z. Xiao; Y. Peng; B. Zheng; Q. Chang; Y. Guo; Z. Chen; Q. Li; G. Hu; Arch. Pharm. (Weinheim), 2021, 354, 2000458.
L.L. Xu; Y.F. Wu; F. Yan; C.C. Li; Z. Dai; Q. D. You; Z. Y. Jiang; B. Di; Free Radic. Biol. Med., 2019, 134, 288-303.
S. K. Kashaw; S. Agarwal; M. Mishra; S. Sau; A.K. Iyer; Curr. Comput. Aided Drug Des., 2018, 15, 55-66.
M. Gupta; H. J. Lee; C. J. Barden; D. F. Weaver; J. Med. Chem., 2019, 62, 9824-9836.
C.A. Lipinski; F. Lombardo; B. W. Dominy; P.J. Feeney; Adv. Drug. Deliv. Rev., 2001, 46, 3-26.
D. F. Veber; S. R. Johnson; H.Y. Cheng; B. R. Smith; K. W. Ward;K. D. Kopple; J. Med. Chem., 2022, 45, 2615-2623.
A. K. Ghose; V. N. Viswanadhan; J. J. Wendoloski; J. Comb. Chem., 1999, 1, 55-68.
A. K. Ghose; T. Herbertz; R. L. Hudkins; B. D. Dorsey; J. P. Mallamo; ACS Chem. Neurosci., 2012, 3, 50-68.
P. Y. Ayala; G. E. Scuseria; J. Chem. Phys., 1999, 110, 3660-3671.
A. Kumer; M. N. Sarker; S. Paul; Int. J. of Chem. and Tech., 2019, 3, 26-37.
S.Muthu; J. U. Maheswari; Spectrochim. Acta A. Mol. Biomol. Spectrosc., 2012, 92, 154-163.
L. Li; T. Cai; Z. Wang; Z. Zhou; Y. Geng; T. Sun; Spectrochim. Acta A. Mol. Biomol. Spectrosc., 2014, 120, 106-118.
T. Koopmans; Physica, 1934, 1, 104-113.
A. Grosdidier; V. Zoete; O. Michielin; Nucleic Acids Res., 2011, 39, 270-277.
A. Grosdidier; V. Zoete; O. Michielin; J. Comput. Chem., 2011, 32, 2149-2159.
E. F. Pettersen; T. D. Goddard; C. C. Huang; G. S. Couch; D. M. Greenblatt; E. C. Meng; T.E. Ferrin; J. Comput. Chem., 2004, 25, 1605-1612.
S. Y. Huang; X. Zou; Int. J. Mol. Sci., 2010, 11, 3016-3034.
P. L. Kastritis; A. M. J. J. Bonvin; J. R. Soc. Interface, 2013,10, 20120835.
X. Du; Y. Li; Y. L. Xia; S. M. Ai; J. Liang; P. Sang; X. L. Ji; S.Q. Liu; Int. J. Mol. Sci., 2016, 17, 144.
L. Marchetti; D. Porciani; S. Mitola; C. Giacomelli; Front. Mol. Biosci., 2022, 921677.
O.S. Wolfbeis; Methods. Appl. Fluoresc., 2021, 9, 042001.
M. Rahman; Z. Muhseen; M. Junaid; H. Zhang; Curr. Protein. Pept. Sci., 2015, 16, 502-512.
D.A. Dougherty; Science, 1996, 271, 163-168.
F. Neese; Software update: The ORCA program system—Version 5.0, WIREs Comp. Mol. Sci., 2022, 12.
A.D. Becke; J. Chem. Phys., 1993, 98,1372-1377.
C. Lee; W. Yang; R.G. Parr; Phys. Rev. B., 1988, 37, 785-789.
S.H. Vosko; L. Wilk; M. Nusair, Can. J. Phys., 1980, 58, 1200-1211.
P.J. Stephens; F.J. Devlin; C.F. Chabalowski; M.J. Frisch; J. Phys Chem., 1994, 98, 11623-11627.
S. Grimme; J. Antony; S. Ehrlich; H. Krieg; J. Chem. Phys., 2010, 132, 154104.
S. Grimme; S. Ehrlich; L. Goerigk; J. Comput. Chem. 2011, 32, 1456-1465.
F. Weigend; R. Ahlrichs; Phy. Chem., 2005, 7, 3297.
H. R. Christofk; M. G. V. Heiden; N. Wu; J. M. Asara; L. C. Cantley; Nature, 2008, 452, 181-186.
H. Lineweaver; D. Burk; J. Am. Chem. Soc., 1934, 56, 658-666.
N. M. O’Boyle; M. Banck; C.A. James; C. Morley; T. Vandermeersch; G. R. Hutchison; J. Cheminform., 2011, 3, 33.
T.M. Larsen; L.T. Laughlin; H.M. Holden; I. Rayment; G.H. Reed; Biochemistry, 1994, 33: 6301-6309
Dassault Systèmes BIOVIA, 2020 Discovery studio 2020 Client.
A. Daina; O. Michielin; V. Zoete; Sci. Rep., 2017, 7, 42717.
M. Lobell; M. Hendrix; B. Hinzen; J. Keldenich; H. Meier; C. Schmeck; R. Schohe-Loop; T. Wunberg; A. Hillisch; ChemMedChem. 2006, 1, 1229-1236.
A. Daina; O. Michielin; V. Zoete; J. Chem. Inf. Model. 2014, 54, 3284-3.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.