GREEN CATALYTIC SYNTHESIS OF PHENPROCOUMON
DOI:
https://doi.org/10.24193/subbchem.2019.3.04Keywords:
triflic acid; activated carbon, Friedel-Crafts alkylation, 4-hydroxycoumarin; phenprocoumonAbstract
The catalytic potential of triflate-based activated carbon composites has been investigated in phenprocoumon (C3-alkylated compound) synthesis, through the alkylation of 4-hydroxycoumarin with phenyl-ethyl-carbinol. The main reaction products are O- and C3-alkylated compounds. However, O-alkylated product is more easily produced to the detriment of the C3-alkylated compound, the selective synthesis of the last being a challenge in these conditions. Both the conversion of 4-hydroxycoumarin and the selectivity to C3-alkylated compound is highly influenced by the physico-chemical characteristics of the catalysts and the reaction conditions. The highest 4-hydroxycoumarin conversions (16.0-30.0%) and selectivity to phenprocoumon (94.0-99.7%) were achieved with triflate-based activated carbon composites, characterized by the existence of strong Brønsted acid sites, optimal Lewis/Brønsted acid ratio, and bimodal micro-/mesoporosity.
References
W. Bonrath, M. Eggersdorfer, T. Netscher, Catal. Today, 2007, 121, 45-57.
C. Schneider, Mol. Nutr. Food Res., 2005, 49, 7-30.
J.M. Tucker, D.M. Townsend, Biomed. Pharmacother., 2005, 59, 380-387.
K. Saldeen, T. Saldeen, Nutr. Res., 2005, 25, 877-889.
A. Rüttimann, Chimia, 1986, 40, 290-306.
S.M. Coman, S. Wuttke, A. Vimont, M. Daturi, E. Kemnitz, Adv. Synth. & Catal., 2008, 350, 2517-2524.
S.M. Coman, V.I. Parvulescu, S. Wuttke, E. Kemnitz, Chem. Cat. Chem, 2010, 2, 92–97.
Ch. Raji Reddy, B, Srikanth, N. Narsimha Rao, D.-S. Shin, Tetrahedron, 2008, 64, 11666-11672.
R.D.H. Murray, J. Mendez, S.A. Brown, “The Natural Coumarins: Occurrence, Chemistry, and Biochemistry”, John Wiley & Sons, New York, NY, USA, 1982.
V. Narayana, R. Varala, V. Kotra, P.K. Zubaidha, Research & Reviews: J. Chem., 2013, 2, 1-6.
E. Enders, Angew. Chem., 1957, 69, 481-481.
W. Huang, J. Wang, Q. Shen, X. Zhou, Tetrahedron, 2007, 63, 11636-11643.
R. Rueping, B.J. Nachtsheim, E. Sugiono, Synlett, 2010, 1549-1553.
P. N. Chatterjee, S. Roy, Tetrahedron, 2011, 67, 4569-4577.
V. Narayana, R. Varala, P. Zubaidha, Int. J. Org. Chem., 2012, 2, 287-294.
M.C. Clark, C. Morris Smith, D.L. Stern, J.S. Beck, "Handbook of Heterogeneous Catalysis (second, completely revised and enlarged edition)", G. Ertl, H. Knozinger, F. Schuth, J. Weitkamp (Eds.), vol. 7, WILEY-VCH Verlag GmbH & Co.KGaA, 2008, pp.3153.
Q. Deng, C.C. Wilkie, R.B. Moore, K.A. Mauritz, Polymer, 1998, 39, 5961-5972.
A. De Angelis, C. Flego, P. Ingallina, L. Montanari, M. Clerici, C. Carati, C. Perego, Catal. Today, 2001, 65, 363-371.
I. Podolean, F. Anita, H. García, V.I. Parvulescu, S.M. Coman, Catal. Today, 2017, 279, 45-55.
L. Plasseraud, B. Therrien, A. Růžička, H. Cattey, Inorg. Chem. Acta, 2012, 380,50-56.
A. de Angelis, C. Flego, P. Ingallina, L. Montanari, M.G. Clerici, C. Carati, C. Perego, Catal. Today, 2001, 65, 363-371.
JCPDS (2001) International Centre for Diffraction Data 25-0284. (www.icdd.com)
M.J. Lázaro, L. Calvillo, V. Celorrio, J.I. Pardo, S. Perathoner, R. Moliner, "Carbon Black: Production, Properties and Uses", I.J. Sanders, T.L. Peeten (Eds.), Ch. 2, "Study and application of carbon black Vulcan XC-72R in polymeric electrolyte fuel cells", 2011 Nova Science Publishers, Inc.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.