LAYERED DOUBLE HYDROXIDES, PECULIAR AND VERSATILE MATERIALS OFFERING MANY RESEARCH AND APPLICATION POSSIBILITIES

Authors

  • Pál SIPOS Institute of Chemistry Material and Solution Structure Research Group, University of Szeged; Department of Inorganic and Analytical Chemistry, University of Szeged, Hungary. Email: sipos@chem.u-szeged.hu. https://orcid.org/0000-0003-1407-0950
  • István PÁLINKÓ Department of Organic Chemistry, University of Szeged, Hungary. Email: palinko@chem.u-szeged.hu. https://orcid.org/0000-0002-8508-309X

DOI:

https://doi.org/10.24193/subbchem.2019.3.03

Keywords:

layered double hydroxides; synthetic and characterization methods; catalytic application of the as-prepared forms

Abstract

This review article describes the major structural features of layer double hydroxides (LDHs), gives an overview of their synthetic and modification methods as well as the structural characterization possibilities both the generally used and those, which can only be used for specific LDHs. The catalytic use of these materials without calcination, i.e. the layered structure is preserved, are also highlighted. The paper places the authors’ works of about the last decade in the framework of recent papers and review articles of this broad field.

References

I. Pálinkó; Á. Molnár; J. B.Nagy; K. Lázár; J. Valyon; I. Kiricsi; J. Chem. Soc., Faraday Trans., 1997, 93, 15911599

Á. Fudala; I. Pálinkó; I. Kiricsi; Inorg. Chem., 1999, 38, 46534658

I. Rousselot; C.T. Guého; F. Leroux; P. Léone; P. Palvadeau; J.-P. Besse; J. Solid State Chem., 2002, 167, 137–144

S.J. Mills; A.G. Christy; J.-M.R. Génin; T. Kameda; F. Colombo; Miner. Mag., 2012, 76, 1289–1336

G.D. Evans; R.C.T. Slade; Struct. Bond., 2006, 119, 1–87

J. He; M. Wei; B. Li; Y. Kang; D.G. Evans; X. Duan; Struct. Bond., 2006, 119, 89–119

G.R. Williams; A.I. Khan; D. O’Hare; Struct. Bond., 2006, 119, 161–192

P. Nalawade; B. Aware; V.J. Kadam; R.S. Hirlekar; J. Sci. Ind. Res., 2009, 68, 267–272

C. Taviot-Gueho; Y. Feng; A. Faour; F. Leroux; Dalton Trans., 2010, 39, 5994–6005.

Ogawa, M.; Inomata, K. Preparation of layered double hydroxides. Clay Sci. 2011, 15, 131–137

Y. Lin; G. Wang; Recent Patents on Nanotechnology, 2012, 6, 169–173

G. Mascolo; M.C. Mascolo; Mic. Mes. Mater., 2015, 214, 246–248

J. Qu; Q. Zhang; X. Li; X. He, X.; Song; Appl. Clay Sci., 2016, 119, 185–192

M. Pavlovic; P. Rouster; T. Oncsik; I. Szilagyi; ChemPlusChem, 2017, 82, 121–131

V. Prevot; Y. Tokudome; J. Mater. Sci., 2017, 52, 11229–11250

E. Conterosito; V. Gianotti; L. Palin; E. Boccaleri; D. Viterbo; M. Milanesio; Inorg. Chim. Acta, 2018, 470, 36–50

S. Intasa-ard; K. Imwiset; S. Bureekaew; M. Ogawa; Dalton Trans., 2018, 47, 2896–2916

M.V. Bukhtiyarova; J. Solid State Chem., 2019, 269, 494–506

Layered Double Hydroxides: Present and Future, V. Rives; Ed.; ISBN 978-1-61209-289-8, Nova Science Publishers, Inc, New York, 2001

Handbook of Layered Materials, S. M. Auerbach; K. A. Carrado; P. K. Dutta; Eds; ISBN 0-8247-5349-6, Marcel Dekker, Inc., New York, Basel, 2004

Handbook of Clay Science Parts A and B, 2nd ed., F. Bergaya; G. Lagaly; Eds; ISBN-13: 978-0080993645, Elsevier, Amsterdam, 2013

Layered Double Hydroxides (LDHs) – Synthesis, Characterisation and Applications, I.T. Sherman; Ed.; ISBN 978-1-63482-024-0, Nova Science Publishers, Inc., New York, 2015

J.-H. Yang; J.-H. Lee; H.-J. Ryu; A.A. Elzatahry; Z.A. Alothman; J.-H. Choy; Appl. Clay Sci., 2016, 130, 20–32

S. Saha; S. Ray; R. Acharya; T. K. Chatterjee; J. Chakraborty; Appl. Clay Sci., 2017, 135, 493–509

J. Qu; L. Sha; C. Wu; Q. Zhang; Nanomater., 2019, 9, 80:1–15

Y. Liu; Y. Gao; Q. Wang; W. Lin; Dalton Trans., 2018, 47, 14827–14840

P. Gu; S. Zhang; X. Li; X. Wang; T. Wen; R. Jehan; A. Alsaedi; T. Hayat; X. Wang; Environ. Poll., 2018, 240, 493–505

X. He; X. Qiu; C. Hu; Y. Liu; J. Disp. Sci. Technol., 2018, 39, 792–801

X. Li; D. Du; Y. Zhang; W. Xing; Q. Xue; Z. Yan; J. Mater. Chem. A, 2017, 5, 15460–15485

L. Mohapatra; K. Parida; J. Mater. Chem. A, 2016, 4, 10744–10766

M.J. Wu; J.Z. Wu; J. Zhang; H. Chen; J.Z. Zhou; G.R. Qian; Z.P. Xu; Z. Du; Q. L. Rao; Catal. Sci. Technol., 2018, 8, 1207–1228

K. Yan; Y. Liu; Y. Lu; J. Chai; L. Sun; Catal. Sci. Technol., 2017, 7, 1622–1645.

M. Xu; M. Wei; Adv. Funct. Mater., 2018, 28, 1802943:1–20

T. Li; H.N. Miras; Y.-F. Song; Catalysts 2017, 7, 260:1–17

K. Takehira; Appl. Clay Sci., 2017, 136, 112–141

P. Sipos; I. Pálinkó; Catal. Today, 2018, 306, 32–41

S.B. Ötvös; I. Pálinkó; F. Fülöp; Catal. Sci. Technol., 2019, 9, 47–60 (2019).

V. Tóth; M. Sipiczki; A. Pallagi; Á. Kukovecz; Z. Kónya; P. Sipos; I. Pálinkó; Chem. Pap., 2014, 68, 633−637

F. Cavani; F. Trifiró; A. Vaccari; Catal. Today, 1991, 11, 173−301

A. Inayat; M. Klumpp; W. Schwieger; Appl. Clay Sci., 2011, 51, 452–459

C. Forano; T. Hibino; F. Leroux; C. Taviot-Guého; Ch.13.1: Layered double hydroxides in Handbook of Clay Science, Developments in Clay Science, F. Bergaya; B.K.G. Theng; G. Lagaly; Eds; Elsevier Ltd 2006, Vol. 1, pp. 1021−1095.

I. Pálinkó; Nanostructures in confined environments in Encyclopedia of Nanoscience and Nanotechnology, H.S. Nalwa; Ed; American Scientific Publishers, 2011, Vol. 19, pp. 183198.

A.I. Khan; D. O’Hare; J. Mater. Chem., 2002, 12, 319131918

G. Choi; J.-H. Yang; G.-Y. Park; A. Vinu; A. Elzatahry; C.H. Yo; J.-H. Choy; Eur. J. Inorg. Chem., 2015, 925930

Zs. Ferencz; M. Ádok-Sipiczki; I. Hannus; P. Sipos; I. Pálinkó; J. Mol. Struct., 2015, 1090, 14−18

B.M. Choudary; B. Kavita; N.S. Chowdary; B. Sreedhar; M.L. Kantam; Catal. Lett., 2002, 78, 373−377

S. Miyata; Clays Clay Miner., 1980, 28, 50−56

M. Sipiczki; E. Kuzmann; I. Pálinkó; Z. Homonnay; P. Sipos; Á. Kukovecz; Z. Kónya; Hyperfine Interactions, 2014, 226, 171−179

M. Szabados; R. Mészáros; Sz. Erdei; Z. Kónya; Á. Kukovecz; P. Sipos; I. Pálinkó; Ultrason. Sonochem., 2016, 31, 409−416

M. Szabados; G. Varga; Z. Kónya; Á. Kukovecz; S. Carlson; P. Sipos, I. Pálinkó; Ultrason. Sonochem., 2018, 40, 853–860

V.R. Khusnutdinov; V.P. Isupov; Chem. Sustain. Dev., 2007, 15, 367–372

W. Tongamp; Q. Zhang; F. Saito; J. Mater. Sci., 2007, 42, 9210−9215

A.N. Ay; B. Zümreoglu-Karan; L. Mafra; Z. Anorg. Allg. Chem., 2009, 635, 1470−1475

M. Milanesio; E. Conterosito; D. Viterbo; L. Perioli; G. Croce; Cryst Growth & Des., 2010, 10, 47104712

A. Hayashi; H. Nakayama; Chem. Lett., 2010, 39, 1060−1062

Zs. Ferencz; Á. Kukovecz; Z. Kónya; P. Sipos; I. Pálinkó; Appl. Clay Sci., 2015, 112–113, 94–99

Zs. Ferencz; M. Szabados; G. Varga; Z. Csendes; Á. Kukovecz; Z. Kónya; S. Carlson; P. Sipos; I. Pálinkó; J. Solid State Chem., 2016, 233, 236−243

Zs. Ferencz; M. Szabados; M. Ádok-Sipiczki; Á. Kukovecz; Z. Kónya; J. Mater. Sci., 2014, 49, 8478−8486

M. Szabados; Z. Kónya; Á. Kukovecz; P. Sipos; I. Pálinkó; Appl. Clay Sci., 2019, 174, 138−145

M. Szabados; Cs. Bús; M. Ádok-Sipiczki; Z. Kónya; Á. Kukovecz; P. Sipos; I. Pálinkó; Particuology, 2016, 27, 29–33

M. Szabados; K. Pásztor; Z. Csendes; Sz. Muráth; Z. Kónya; Á. Kukovecz; P. Sipos; I. Pálinkó; Ultrason. Sonochem., 2016, 32, 173−180

M. Szabados; A.A. Ádám; Z. Kónya; Á. Kukovecz; S. Carlson; P. Sipos; I. Pálinkó; Ultrason. Sonochem. 2019, 55, 165–173

V. Bugris; H. Haspel; Á. Kukovecz; Z. Kónya; M. Sipiczki; P. Sipos; I. Pálinkó; J. Mol. Struct., 2013, 1044, 26−31

V. Bugris; H. Haspel; Á. Kukovecz; Z. Kónya; M. Sipiczki; P. Sipos; I. Pálinkó; Langmuir, 2013, 29, 13315−13321

G. Varga; Á. Kukovecz; Z. Kónya; L. Korecz; Sz. Muráth; Z. Csendes; G. Peintler; S. Carlson; P. Sipos; I. Pálinkó; J. Catal., 2016, 335, 125−134

G. Varga; Sz. Ziegenheim; Sz. Muráth; Z. Csendes; Á. Kukovecz; Z. Kónya; S. Carlson; L. Korecz; E. Varga; P. Pusztai; P. Sipos; I. Pálinkó; J. Mol. Catal. A, 2016, 423, 49–60

G. Varga; Z. Timár; Sz. Muráth; Z. Kónya; Á. Kukovecz; S. Carlson; P. Sipos; I. Pálinkó; Top. Catal., 2017, 60, 1429–1438

G. Varga; Z. Timár; Sz. Muráth; Z. Kónya; Á. Kukovecz; S. Carlson; P. Sipos; I. Pálinkó; Catal. Today, 2018, 306, 42–50

G. Varga; Z. Kónya; Á. Kukovecz; P. Sipos; I. Pálinkó; J. Mol. Struct., 2019, 1179, 263–268

D. Srankó; A. Pallagi; E. Kuzmann; S.E. Canton; M. Walczak; A. Sápi; Á. Kukovecz; Z. Kónya; P. Sipos; I. Pálinkó; Appl. Clay Sci., 2010, 48, 214217

D. Srankó; M. Sipiczki; É.G. Bajnóczi; M. Darányi,; Á. Kukovecz; Z. Kónya; S. E. Canton; K. Norén; P. Sipos; I. Pálinkó; J. Mol. Struct., 2011, 993, 6266

M. Szabados; Z. Kónya; Á. Kukovecz; P. Sipos; I. Pálinkó; J. Solid State Chem., 2019, 272, 227–233

M. Sipiczki; E. Kuzmann; Z. Homonnay; J. Megyeri; I. Pálinkó; P. Sipos; J. Mol. Struct., 2013, 1044, 116−120

V. Bugris; M. Ádok-Sipiczki; T. Anitics; E. Kuzmann; Z. Homonnay; Á. Kukovecz; Z. Kónya; P. Sipos; I. Pálinkó; J. Mol. Struct., 2015, 1090, 19−24

S.P. Newman; S.J. Williams; P.V. Coveney; W. Jones; J. Phys. Chem. B, 1998, 102, 6710−6719

P. Kovář; M. Pospíšil; M. Nocchetti; P. Čapková; K. Melánová; J. Mol. Model., 2007, 13, 937−942

K. Yamaguchi; K. Mori; T. Mizugaki; K. Ebitani; K. Kaneda; J. Org. Chem., 2000, 65, 6897–6903

M. Sipiczki; A.A. Ádám; T. Anitics; Z. Csendes; G. Peintler; Á. Kukovecz; Z. Kónya; P. Sipos; I. Pálinkó; Catal. Today, 2015, 241, 231−236

S.B. Ötvös; Á. Georgiádes; R. Mészáros; K. Kis; I. Pálinkó; F. Fülöp; J. Catal., 2017, 348, 90–99

E. Coronado; J.R. Galán-Mascarós; C. Martí-Gastaldo; A. Ribera; Chem. Mater., 2006, 18, 61126114

S. Bhattacharjee; J.A. Anderson; Chem. Commun., 2004, 554–555

S. Bhattacharjee; J.A. Anderson; Catal. Lett., 2004, 95, 119−125

S. Bhattacharjee; T.J. Dines; J.A. Anderson; J. Catal., 2004, 225, 398−407

S. Bhattacharjee; J.A. Anderson; Adv. Synth. Catal., 2006, 348, 151−158

S. Bhattacharjee; T.J. Dines; J.A. Anderson; J. Phys. Chem. C, 2008, 112, 14124–14130

L. Dai; J. Zhang; X. Wang; Y. Chen; RSC Advances, 2013, 3, 19885–19888

Y. Liu; Z. An; L. Zhao; H. Liu; J. He; Ind. Eng. Chem. Res., 2013, 52, 17821−17828

B. Monteiro; S. Gago; S.S. Balula; A.A. Valente; I.S. Gonçalves; M. Pillinger; J. Mol. Catal. A, 2009, 312, 2330

X. Wang; G. Wu; X. Liu; C. Zhang; Q. Lin; Catal. Lett., 2016, 146, 620–628

K.M. Parida; M. Sahoo; S. Singha; J. Mol. Catal. A, 2010, 329, 7–12

J. Marreiros; M. Diaz-Coucea; M.J. Ferreira; D. Pedro; P.D. Vaz; M.J. Calhorda; C.D. Nunes; Inorg. Chim. Acta, 2019, 486, 274–282

J.-H. In; S.-E. Park; R. Song; W. Nam; Inorg. Chim. Acta, 2003, 343, 373−376

F. Ullmann; P. Sponagel; Chem. Ber., 1905, 38, 2211−2212

F. Monnier; M. Taillefer; Angew. Chem. Int. Ed., 2009, 48, 6954–6971

B.M. Choudary; B. Kavita; N.S. Chowdari; B. Sreedhar; M.L. Kantam; Catal. Lett., 2002, 78, 373377

Z. An; W. Zhang; H. Shi; J. He; J. Catal., 2006, 241, 319327

M. Sipiczki; D.F. Srankó; Gy. Szőllősi; Á. Kukovecz; Z. Kónya; P. Sipos; I. Pálinkó; Top. Catal., 2012, 55, 858864 (2012)

R. Bruckner in Organic Reaction Mechanisms. Reactions, Stereochemistry and Synthesis, M. Harmata; Ed; Springer-Verlag Berlin Heidelberg, 2010, p. 530.

S.B. Ötvös; Á. Georgiádes; M. Ádok-Sipiczki; R. Mészáros; I. Pálinkó; P. Sipos; F. Fülöp; Appl. Catal. A, 2015, 501, 63−73 (2015).

Downloads

Published

2019-09-30

How to Cite

SIPOS, P. ., & PÁLINKÓ, I. . (2019). LAYERED DOUBLE HYDROXIDES, PECULIAR AND VERSATILE MATERIALS OFFERING MANY RESEARCH AND APPLICATION POSSIBILITIES. Studia Universitatis Babeș-Bolyai Chemia, 64(3), 33–46. https://doi.org/10.24193/subbchem.2019.3.03

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.