CYCLIC VOLTAMMETRY AND SHORT-TIME SCALE CHRONOAMPEROMETRY AT LAYER-BY-LAYER SELF-ASSEMBLED Au MODIFIED ELECTRODES. FRUCTOSE BIOSENSOR
DOI:
https://doi.org/10.24193/subbchem.2020.1.01Keywords:
Self-assembled multilayer architecture, electrostatic interactions, Au modified electrodes, reagentless amperometric biosensors, Os redox polymerAbstract
Cyclic voltammetry (CV) and short-time scale chronoamperometry measurements were performed aiming to investigate the layer-by-layer self-assembled multilayer structures built on Au electrodes. The attractive electrostatic interactions exerted between the successively deposited layers of charged polymers were exploited in order to immobilize a cationic Os redox polymer onto the surface of Au modified electrodes. CV responses observed at the resulted Au modified electrodes proved the efficiency of the proposed design. The chronoamperometric responses were fitted by using a three-phase exponential decay function. The fitting parameters allowed comparing the ability of charge transfer of the investigated modified electrodes. The most efficient structure was used as an amperometric transducer for electrical communication between fructose dehydrogenase and the Au electrode. In order to validate the new approach as a proof of concept for obtaining reagentless biosensors, a functional amperometric biosensor for D-fructose was successfully built.References
G. A. Edwards, A. J. Bergren, M. D. Porter, “Chemically Modified Electrodes”, p. 295–327, in Handbook of Electrochemistry, Zoski, C. (ed), Elsevier Science, Amsterdam, The Netherlands, 2006
A. Ulman, Chem. Rev., 1996, 96, 1533-1554
A. L. Eckermann, D. J. Feld, J. A. Shaw, T. J. Meade, Coord. Chem. Rev., 2010, 254, 1769–1802
D. Schlereth, Compr. Anal. Chem., 2005, 44, 1-63
R. S. Freire, Ch. A. Pessoa, L. T. Kubota, Quim. Nova, 2003, 26, 381-389
G. Decher, J. D. Hong, Makromol. Chem. Macromol. Symp., 1991, 46, 321–327
Y. Lvov, K. Anga, I. Ichinose, T. Kunitake, J. Am. Chem. Soc., 1995, 117, 6117–6123
D. Laurent, J.B. Schlenoff, 1997, 13, 1552–1557
F. Caruso, K. Nlikura, D. N. Furlong, Y. Okahata, Langmuir, 1997, 13, 3422–3426
J. Hodak, R. Etchenique, E. J. Calvo, K. Singhal, P. N. Bartlett, Langmuir, 1997, 13, 2708–2716
H. Shi-Feng, Y. Ke-Sheng, F. Hui-Qun, Ch. Hong-Yuan, Talanta, 1998, 47, 561–567
A. Nárvaez, G. Suarez, I. C. Popescu, I. Katakis, E. Domínguez, Biosens. Bioelectron., 2000, 15, 43-52
U. B. Trivedi, D. Lakshminarayana, I. L. Kothari, P. B. Patel, C. J. Panchal, Sens. Actuators B Chem., 2009, 136, 45-51
R. J. Forster, Analyst, 1996, 121, 733-741
R. J. Forster, Anal. Chem., 1995, 67, 1232-1239
L. D. Burke, P. F. Nugent, Gold Bull., 1997, 30, 43-53
I. Katakis, “Development and analysis of operation of enzyme electrodes based on electrochemically ‘wired’ oxidoreductases”. PhD Thesis, 1994, University of Texas at Austin, USA
I. Katakis, A. Heller, Anal. Chem., 1992, 64, 1008–1013
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.