MODELLING OF THE SUGAR BEET PULP DRYING PROCESS

Authors

  • Adina GHIRIŞAN (MICLĂUȘ) Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania. Email: ghirisan@chem.ubbcluj.ro. https://orcid.org/0000-0002-7341-4365
  • Simion DRĂGAN Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania. Email: sdragan@chem.ubbcluj.ro. https://orcid.org/0000-0002-9849-9940
  • Constantin COŢA Institutul Naţional de Cercetare - Dezvoltare Pentru Maşini şi Instalaţii Destinate Agriculturii şi Industriei Alimentare, Cluj-Napoca, Romania. Corresponding author: miclaus@chem.ubbcluj.ro.
  • Elena-Mihaela NAGY Institutul Naţional de Cercetare - Dezvoltare Pentru Maşini şi Instalaţii Destinate Agriculturii şi Industriei Alimentare, Cluj-Napoca, Romania. Corresponding author: miclaus@chem.ubbcluj.ro. https://orcid.org/0000-0002-8909-9160
  • Gyorgy ZOLTAN Institutul Naţional de Cercetare - Dezvoltare Pentru Maşini şi Instalaţii Destinate Agriculturii şi Industriei Alimentare, Cluj-Napoca, Romania. Corresponding author: miclaus@chem.ubbcluj.ro.
  • Vasile MICLĂUŞ Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania. Email: miclaus@chem.ubbcluj.ro. https://orcid.org/0000-0001-7377-526X

DOI:

https://doi.org/10.24193/subbchem.2020.2.02

Keywords:

sugar beet pulp, drying kinetics, drying rate, mathematical modeling

Abstract

The paper presents the drying model proposed for sugar beet pulp in the presence of hydrated lime within a range temperature of 333 and 368 K. The experimental results were used to identify the coefficients in the two-term exponential model, choose as the most appropriated model for our case. The relationships for the variation of the coefficients with temperature were determined. The equations of the mathematical model were used to establish the optimal drying time.

References

M. Asadi; Sugar Beet Handbook, John Wiley&Sons Inc., Hoboken, New Jersey, 2006.

E. Evans; U. Messerschmidt; J. Anim, Sci. Biotechnol., 2017, 8, 1-10.

C. Ibáñez; M.C. López; P. Criscioni; C. Fernández; Anim. Prod. Sci., 2015, 55(1), 56-63.

M. Münnich; F. Klevenhusen; Q. Zebeli; J. Sci. Food and Agric., 2018, 98(3), 991-997.

M. Münnich; R. Khiaosaard; F. Klevenhusen; A. Hilpold; Q. Zebeli; Anim. Feed Sci. Tech., 2017, 224, 78-89.

A.P.A. Monteiro; J.K. Bernard; J.R. Guo; X.S. Weng; S. Emanuele; R. Davis; G.E. Dahl; S. Tao; J. Dairy Sci., 2017, 100(2), 1063-1069.

A. Jokić; Z. Zavargo; N. Lukić; B. Ikonić; J. Marković; J. Dodić; J. Grahovac; J. on Process and Energy in Agri., 2013, 17(1), 24-30.

L. Mogensen; T. Kristensen; Acta. Agric. Scand. (A), 2003, 53, 86–96.

P. Melendez, P.J Pinedo; J. Appl. Anim. Res., 2015, 43(3), 261–265.

E.M. Nagy; C. Coța; N. Cioica; Z. Gyorgy; T. Deac; Proceedings INMATEH-AGRICULTURAL ENGINEERING Conferences, 2019, 112, 03023.

L. Yang; Z. Hu; L. Yang; S. Xie; M. Yang; INMATEH - Agricultural Engineering, 2018, 55(2), 53-62.

T.Y. Tende-Akintunde; G.O. Ogunlakin; J. Food Sci. Technol., 2013, 50(4), 705-713.

A. Ghirisan; S. Dragan; C. Cota; E.M. Nagy: V. Miclaus; Studia UBB Chemia, 2018, 63(2), 53-62.

E.K. Akpinar; S. Toraman; Heat Mass Trans., 2015, 8(2), 110-123.

I. Doymaz, Energy Conv. and Manag., 2012, 56, 199-205.

D.G. Overhults; H.E. White; H.E. Hamilton; I.J. Ross; Trans. of ASAE, 1973, 16, 112-113.

S.M. Henderson; Trans. of ASAE, 1974, 17, 1167-1172.

E.K. Akpinar; J. Food Eng., 2006, 73(1), 75-84.

A. Ghirisan; S. Dragan; Studia UBB Chemia, 2013, LVIII(2), 35-42.

Downloads

Published

2020-06-30

How to Cite

GHIRIŞAN (MICLĂUȘ), A., DRĂGAN, S. ., COŢA, C. ., NAGY, E.-M. ., ZOLTAN, G. ., & MICLĂUŞ, V. . (2020). MODELLING OF THE SUGAR BEET PULP DRYING PROCESS. Studia Universitatis Babeș-Bolyai Chemia, 65(2), 21–28. https://doi.org/10.24193/subbchem.2020.2.02

Issue

Section

Articles

Most read articles by the same author(s)

<< < 1 2 

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.