ESTIMATION OF THE USEFULNESS OF GLASSY CARBON ELECTRODE IN NON-AQUEOUS SOLVENTS POLARIZED TO HIGHER ANODIC POTENTIALS
DOI:
https://doi.org/10.24193/subbchem.2020.3.06Keywords:
Glassy carbon; Preanodisation; Permittivity; Deactivation; Non-aqueous solventsAbstract
In this paper, suitability of glassy carbon electrode in numerous non-aqueous solvents used widely in electrochemistry (methanol, acetone, dichloromethane, nitrobenzene, nitromethane, 1-butanol, dimethyl sulfoxide, dimethyl formamide, tetrahydrofuran) was studied by changing the potential of preanodisation. The potential range studied in viewpoint of preanodisation effect was between 1 and 3 V. At higher potentials, glassy carbon electrode deactivated in many solvents which was clearly demonstrated using the aqueous solution of a redox probe 1,4-dihydroxybenzene. Due to the low permittivity, some solvents (ethyl acetate, chloroform) were investigated using a preanodisation at 3 V because of the significant ohmic drop and the surface state also changed. Results highlight the importance of this limitation caused by polarizing above 2 V and it must be considered when glassy carbon electrode is selected for the investigations carried out in these conditions.
References
L. Kiss, F. Kovács, S. Kunsági-Máté, Periodica Polytechnica Chemical Engineering, https://doi.org/10.3311/Ppch.14959.
A.M. Abdel-Aziz, H.H. Hassan, I.H.A. Badr, Analytical Chemistry, 2020, 92, 7947.
A. Dekanski, J. Stevanovic, R. Stevanovic, B.Z. Nikolic, V.M. Jovanovic, Carbon, 2001, 39, 1195.
B. Farajmand, M.A. Kamyabi, F.Y. Sorkhani, H.S. Jam, H. Bahrami, Journal of Electroanalytical Chemistry, 2020, 861, DOI: 10.1016/j.jelechem.2020.113966.
Y.W. Li, J. Zhou, J. Song, X.S. Liang, Z.P. Zhang, D. Men, D.B. Wang, X.E. Zhang, Biosensors & Bioelectronics, 2019, 144, DOI: 10.1016/j.bios.2019.111534.
L.Y. Wang, Y. Wang, Q.F. Zhuang, Journal of Electroanalytical Chemistry, 2019, 851, DOI: 10.1016/j.jelechem.2019.113446.
T. Bystron, E. Sramkova, F. Dvorak, K. Bouzek, Electrochimica Acta, 2019, 299, 963.
S. Berto, L. Carena, F. Valmacco, C. Barolo, E. Conca, D. Vione, R. Buscaino, M. Fiorito, C. Bussi, O. Abollino, M. Malandrino, Electrochimica Acta, 2018, 284, 279.
X.B. Hu, W.H. Zheng, R.F. Zhang, Journal of Solid State Electrochemistry, 2016, 20, DOI: 10.1007/s10008-016-3302-8.
E. Chiavazza, S. Berto, A. Giacomino, M. Malandrino, C. Barolo, E. Prenesti, D. Vione, O. Abollino, Electrochimica Acta, 2016, 192, 139.
L. Kiss, S. Kunsági-Máté, Periodica Polytechnica Chemical Engineering, https://doi.org/10.3311/Ppch.14311.
J. Cassidy, S.B. Khoo, S. Pons, M. Fleischmann, Journal of Physical Chemistry, 1985, 89, 3933.
L. Kiss, F. Kovács, H. Li, A. Kiss, S. Kunsági-Máté, Chemical Physics Letters, 2020, 754.
L. Kiss, D. Bősz, F. Kovács, H. Li, G. Nagy, S. Kunsági-Máté, Polymer Bulletin, 2019, 76, 5849.
L. Kiss, D. Bősz, F. Kovács, H. Li, S. Kunsági-Máté, Polymer Bulletin, 2019, 76, 215.
David R. Lide, Handbook of Chemistry and Physics, 76th Edition 1995-1996, Chapter 6, p. 170.
M.A. Hernández-Olmos, L. Agüí, P. Yánez-Sedeno, J.M. Pingarrón, Electrochimica Acta, 2000, 46, 289.
L. Agüí, J.E. López-Guzmán, A. González-Cortés, P. Yánez-Sedeno, J.M. Pingarrón, Analytica Chimica Acta, 1999, 385, 241.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.