MPROVING THE CORROSION RESISTANCE OF MILD STEEL BY ZINC-GRAPHENE OXIDE COATINGS

Authors

  • Nicoleta COTOLAN Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania. Corresponding author: jdchelaru@chem.ubbcluj.ro. https://orcid.org/0000-0002-2283-7931
  • Graziella Liana TURDEAN Faculty of Chemistry and Chemical Engineering, Research Center of Electrochemistry and Nonconventional Materials, Babeş-Bolyai University, Cluj-Napoca, Romania. Email: gturdean@chem.ubbcluj.ro. https://orcid.org/0000-0003-1273-6878
  • Julieta Daniela CHELARU Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania. Email: jdchelaru@chem.ubbcluj.ro. https://orcid.org/0000-0001-5861-5073

DOI:

https://doi.org/10.24193/subbchem.2020.3.02

Keywords:

Graphene Oxide, Electrochemical Impedance Spectroscopy, Polarization Curves, Corrosion Resistance, Steel Corrosion

Abstract

The main purpose of this work is to improve the corrosion resistance of steel substrates using the characterization of new composite zinc electrodeposits containing graphene oxides and reduced graphene oxide. The zinc-graphene based composite deposits were obtained by electrodeposition of an acidic electrolyte (pH = 5) at a current density of 20 mA/cm2. Anionic surfactant (i.e., sodium dodecyl sulfate) was used to obtain uniform and compact coating morphology. Also, the investigated deposits had in their structure the graphene oxides produced by graphite exfoliation and the results concerning corrosion behavior of the zinc electrodeposits (Zn/S235 and Zn-graphene/S235) were compared using the same experimental conditions. Microstructural characterization was carried out by SEM‐EDS, whereas corrosion resistance was evaluated by EIS and polarization curves.

References

R. Jain; R. Pitchumani; Surf. Coat. Tech., 2018, 337, 223-231.

C.T.J. Low; R.G.A. Wills; F.C. Walsh; Surf. Coat. Tech. 2006, 201, 371-383.

A. Ambrosi; M. Pumera; Chem-Eur. J., 2016, 22, 153-159.

S. K. Choudhary; A. K. Gupta; Solid State Commun., 2011, 151, 396-399.

M. Schriver; W. Regan; W.J. Gannett; A.M. Zaniewski; M.F. Crommie; A. Zettl; ACS Nano, 2013, 7, 5763-5768.

M. Yi; Z. Shen; J. Mater Chem. A., 2015, 3, 11700-11715.

G. Allaedinia; E. Mahmoudia; P. Aminayib; S. Masrinda Tasirina; A. Wahab Mohammad; Synth. Met., 2016, 220, 72-77.

X. Chen; D. Meng; B. Wang; B.W. Li; W. Li; C.W. Bielawski; R.S. Ruoff; Carbon, 2016, 101, 71-76.

A.B. López-Oyama; M.A. Domínguez-Crespo; A.M. Torres-Huerta; E. Onofre-Bustamante; R. Gámez-Corrales; N. Cayetano-Castro; Diam. Relat. Mater., 2018, 88, 167-188.

N.T. Kirkland; T. Schiller; N. Medhekar; N. Birbilis; Corros. Sci., 2012, 56, 1-4.

B.P. Singh; S. Nayak; K.K. Nanda; B.K. Jena; S. Bhattacharjee; L. Besra; Carbon, 2013, 61, 47-56.

B. Ramezanzadeh; A. Ahmadi; M. Mahdavian; Corros. Sci., 2016, 109, 182-205.

J. Zhao; X. Xie; C. Zhang; Corros. Sci., 2017, 114, 146-155.

X. Shen; J. Sheng; Q. Zhang; Q. Xu; D. Cheng, J. Mater. Eng. Perform., 2018, 27, 3750-3761.

S. Ryu; Y.J. Kwon; Y. Kim; J. Uk Lee; Mater. Chem. Phys., 2020, 250, 123039-123047.

J.D. Chelaru; D. Aylakov, L.M. Mureşan, Studia UBB Chem., 2017, 4,357-368.

A. Pérez del Pino; E. György; C. Cotet; L. Baia; C. Logofatu; RSC Advances, 2016, 6, 50034-50042.

Downloads

Published

2020-09-30

How to Cite

COTOLAN, N. ., TURDEAN, G. L., & CHELARU, J. D. . (2020). MPROVING THE CORROSION RESISTANCE OF MILD STEEL BY ZINC-GRAPHENE OXIDE COATINGS. Studia Universitatis Babeș-Bolyai Chemia, 65(3), 23–32. https://doi.org/10.24193/subbchem.2020.3.02

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 12 13 14 15 16 17 18 19 20 21 > >> 

You may also start an advanced similarity search for this article.