A VIABLE STRATEGY FOR THE BIODEGRADATION OF HALOGENATED ORGANIC COMPOUNDS FROM THE WASTEWATER MEDIATED BY PSEUDOMONAS PUTIDA
DOI:
https://doi.org/10.24193/subbchem.2021.1.11Keywords:
biodegradation, dehalogenation, groundwater, halogenated organic compounds, Pseudomonas putida.Abstract
Microbial degradation is to be considered a perspective solution in the elimination of microporous organic compounds in the environment. Various studies attest to the Pseudomonas putida species as being capable of aerial biodegradation of numerous organic compounds including chlorinated aromatic compounds. The aim of this study was to demonstrate the ability of Pseudomonas putida to grow on various organic substrates, being a possible candidate for dehalogenation of various chlorinated organic compounds Water samples were prepared by contamination with a solution containing 1,1,1-trichloroethane, 1,1,1,2-tetrachloroethane, trichloromethane and tetrachloromethane. The concentrations of halogenated organic compounds, before and after inoculation, were determined by gas chromatographic method. The results obtained showed the reduction, in the presence of Pseudomonas putida, of various halogenated organic compounds such as 1,1,1-trichloroethane, 1,1,1,2-tetrachloroethane, trichloromethane and tetrachloromethane with values ranging from 23% to 45% over a time interval of 120 days. The present study demonstrates the ability of Pseudomonas putida to grow on various organic substrates, being a possible candidate for dehalogenation of various types of chlorinated organic compounds.
References
M. Anjum; R. Miandad; M. Waqas; F. Gehany; M.A. Barakat; Arab. J. Chem., 2019, 12, 4897–4919.
K. Rehman; A. Imran; I. Amin; M. Afzal; Chemosphere, 2019, 217, 576–583.
G. Fuchs; M. Boll; J. Heider; Nat. Rev. Microbiol., 2011, 9, 803–816.
M. Kronenberg; E. Trably; N. Bernet; D. Patureau; Environ. Pollut., 2017, 231, 509–523.
L.C. Oprean; I. Oprean; O. Danciu; G. Ciortea; Republican Technical-Scientific Library, 2012, 1(1-3), 580-590.
R. Iancu, Transylv. Rev. Syst. Ecol. Res., 2013, 15, 91–116.
A.A. Sari; N. Ariani; S. Tachibana; Y. Sudiyani; AIP Conf. Proc., 2016, 1744, 020003.
K.F. Reardon; D.C. Mosteller; J.D. Bull Rogers; Biotechnol. Bioeng., 2000, 69, 385–400.
M. Farhadian; D. Duchez; C. Vachelard; C. Larouche; Water Res., 2008, 42, 1325–1341.
P.J. Hernes; R. Benner; J.G.R. Oceans, 2003, 108, doi.org/10.1029/
JC001421.
M.S. Fuentes; C.S. Benimeli; S.A. Cuozzo; M.J. Amorosso; Int. Biodeterior. Biodegradation, 2010, 64, 434–441.
D. Paul; Microbial Technology for Health and Environment, Springer, Singapore; 2020; 303–325. doi.org/10.1007/978-981-15-2679-4_12.
C.A. Pettigrew; B.E. Haigler; J.C. Spain; Appl. Environ. Microbiol., 1990, 57(1), 157-162.
K.R. Sowers; H.D. May; Curr. Opin. Biotechnol, 2013, 24, 482–488.
M.S. Díaz-Cruz; D. Barceló; Chemosphere. 2008, 72, 333–342.
A. Chebbi; D. Hentati; H. Zaghden; N. Baccar; F. Rezgui; M. Chalbi; S. Sayadi; M. Chamkha; Int. Biodeterior. Biodegradation, 2017, 122, 128–140.
A.K. Haritash; C.P. Kaushik; J. Hazard Mater., 2009, 169, 1–15.
P.K. Arora; H. Bae; Microb. Cell. Fact, 2014, 13, 31–31.
B. Biswas; B. Sarkar; R. Rusmin; R. Naidu; Environ. Int. 2015, 85, 168–181.
M. Lee; E. Wells; Y.K. Wong; J. Koenig; L. Adrian; H.H. Richnow; M. Manefield; Environ. Sci. Technol., 2015, 49, 4481–4489.
P. Mirleau; R. Wogelius; A. Smith; M.A. Kertesz; Appl. Environ. Microb., 2005, 71, 6571–6577.
N.J. Palleroni; Bergey’s Manual of Systematic Bacteriology, Springer, New York, 2005, pp. 323-373.
A Dechesne; G. Wang; G. Gülez; D. Or; B.F. Smets; Proc. Natl Acad. Sci. U S A, 2010, 107, 14369–14372.
J.A. Cray; A.N.W. Bell; P. Bhaganna; A.Y. Mswaka; D.J. Timson; J.E. Hallsworth; Microb. Biotechnol., 2013, 6, 453–492.
M.S. Munna; Z. Zeba; R. Noor; S. J. Microbiol., 2016, 5(1), 9-12.
M. Yoshikawa; M. Zhang; K. Toyota; Microbes Environ., 2017, 32, 188–200.
P. Dvořák; V. de Lorenzo; Metab. Eng., 2018, 48, 94–108.
F.D. Bora; C.I. Bunea; R. Chira; A. Bunea; Molecules, 2020, 25, 750; doi:10.3390/molecules25030750.
A. Donici; C.I. Bunea; A. Calugar; E. Harsan; I. Racz; F.D. Bora; Bulletin UASVM Horticulture, 2018, 75 (2), 127-132.
Christian Penny, Stephane Vuilleumier & Francoise Bringel; FEMS Microbiol Ecol, 2010, 74, 257–275.
ISO 10301:1997: Water quality - Determination of highly volatile halogenated hydrocarbons - Gas-chromatographic methods. 1st ed. (reviewed and confirmed in 2013).
Ana B. Rios Miguel, Mike S.M. Jetten, Cornelia U. Welte; Water Research, 2020, X, 100065.
M.E. Rasche; M.R. Hyman; D.J. Arp; Appl. Environ. Microbiol., 1991, 57, 2986–2994.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.