A VIABLE STRATEGY FOR THE BIODEGRADATION OF HALOGENATED ORGANIC COMPOUNDS FROM THE WASTEWATER MEDIATED BY PSEUDOMONAS PUTIDA

Authors

  • Diana Ionela STEGARUS National Research and Development Institute for Cryogenic and Isotopic Technologies – ICSI Ramnicu Valcea, 4th Uzinei Street, 240050 Ramnicu Valcea, Romania
  • Constantin PALADI Nicolae Testemitanu University of Medicine and Pharmacy of Chisinau, 165 Ștefan cel Mare and Sfint Blvd, 2004 Chisinau, Moldova
  • Ecaterina LENGYEL Lucian Blaga University of Sibiu, 9th Victoriei Street, 550024, Sibiu, Romania
  • Corneliu TANASE Department of Pharmaceutical Botany, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 38 Gheorghe Marinescu Street, Târgu Mureș, Mureș, 540139, Romania https://orcid.org/0000-0002-5900-743X
  • Anamaria CĂLUGĂR Faculty of Horticulture, Advanced Horticultural Research Institute of Transylvania, Viticulture and Oenology Department, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Manastur Street, 400372, Cluj-Napoca Romania https://orcid.org/0000-0003-2288-3783
  • Violeta-Carolina NICULESCU National Research and Development Institute for Cryogenic and Isotopic Technologies – ICSI Ramnicu Valcea, 4th Uzinei Street, 240050 Ramnicu Valcea, Romania. *Corresponding author: violeta.niculescu@icsi.ro https://orcid.org/0000-0002-0439-3265

DOI:

https://doi.org/10.24193/subbchem.2021.1.11

Keywords:

biodegradation, dehalogenation, groundwater, halogenated organic compounds, Pseudomonas putida.

Abstract

Microbial degradation is to be considered a perspective solution in the elimination of microporous organic compounds in the environment. Various studies attest to the Pseudomonas putida species as being capable of aerial biodegradation of numerous organic compounds including chlorinated aromatic compounds. The aim of this study was to demonstrate the ability of Pseudomonas putida to grow on various organic substrates, being a possible candidate for dehalogenation of various chlorinated organic compounds Water samples were prepared by contamination with a solution containing 1,1,1-trichloroethane, 1,1,1,2-tetrachloroethane, trichloromethane and tetrachloromethane. The concentrations of halogenated organic compounds, before and after inoculation, were determined by gas chromatographic method. The results obtained showed the reduction, in the presence of Pseudomonas putida, of various halogenated organic compounds such as 1,1,1-trichloroethane, 1,1,1,2-tetrachloroethane, trichloromethane and tetrachloromethane with values ranging from 23% to 45% over a time interval of 120 days. The present study demonstrates the ability of Pseudomonas putida to grow on various organic substrates, being a possible candidate for dehalogenation of various types of chlorinated organic compounds.

References

M. Anjum; R. Miandad; M. Waqas; F. Gehany; M.A. Barakat; Arab. J. Chem., 2019, 12, 4897–4919.

K. Rehman; A. Imran; I. Amin; M. Afzal; Chemosphere, 2019, 217, 576–583.

G. Fuchs; M. Boll; J. Heider; Nat. Rev. Microbiol., 2011, 9, 803–816.

M. Kronenberg; E. Trably; N. Bernet; D. Patureau; Environ. Pollut., 2017, 231, 509–523.

L.C. Oprean; I. Oprean; O. Danciu; G. Ciortea; Republican Technical-Scientific Library, 2012, 1(1-3), 580-590.

R. Iancu, Transylv. Rev. Syst. Ecol. Res., 2013, 15, 91–116.

A.A. Sari; N. Ariani; S. Tachibana; Y. Sudiyani; AIP Conf. Proc., 2016, 1744, 020003.

K.F. Reardon; D.C. Mosteller; J.D. Bull Rogers; Biotechnol. Bioeng., 2000, 69, 385–400.

M. Farhadian; D. Duchez; C. Vachelard; C. Larouche; Water Res., 2008, 42, 1325–1341.

P.J. Hernes; R. Benner; J.G.R. Oceans, 2003, 108, doi.org/10.1029/

JC001421.

M.S. Fuentes; C.S. Benimeli; S.A. Cuozzo; M.J. Amorosso; Int. Biodeterior. Biodegradation, 2010, 64, 434–441.

D. Paul; Microbial Technology for Health and Environment, Springer, Singapore; 2020; 303–325. doi.org/10.1007/978-981-15-2679-4_12.

C.A. Pettigrew; B.E. Haigler; J.C. Spain; Appl. Environ. Microbiol., 1990, 57(1), 157-162.

K.R. Sowers; H.D. May; Curr. Opin. Biotechnol, 2013, 24, 482–488.

M.S. Díaz-Cruz; D. Barceló; Chemosphere. 2008, 72, 333–342.

A. Chebbi; D. Hentati; H. Zaghden; N. Baccar; F. Rezgui; M. Chalbi; S. Sayadi; M. Chamkha; Int. Biodeterior. Biodegradation, 2017, 122, 128–140.

A.K. Haritash; C.P. Kaushik; J. Hazard Mater., 2009, 169, 1–15.

P.K. Arora; H. Bae; Microb. Cell. Fact, 2014, 13, 31–31.

B. Biswas; B. Sarkar; R. Rusmin; R. Naidu; Environ. Int. 2015, 85, 168–181.

M. Lee; E. Wells; Y.K. Wong; J. Koenig; L. Adrian; H.H. Richnow; M. Manefield; Environ. Sci. Technol., 2015, 49, 4481–4489.

P. Mirleau; R. Wogelius; A. Smith; M.A. Kertesz; Appl. Environ. Microb., 2005, 71, 6571–6577.

N.J. Palleroni; Bergey’s Manual of Systematic Bacteriology, Springer, New York, 2005, pp. 323-373.

A Dechesne; G. Wang; G. Gülez; D. Or; B.F. Smets; Proc. Natl Acad. Sci. U S A, 2010, 107, 14369–14372.

J.A. Cray; A.N.W. Bell; P. Bhaganna; A.Y. Mswaka; D.J. Timson; J.E. Hallsworth; Microb. Biotechnol., 2013, 6, 453–492.

M.S. Munna; Z. Zeba; R. Noor; S. J. Microbiol., 2016, 5(1), 9-12.

M. Yoshikawa; M. Zhang; K. Toyota; Microbes Environ., 2017, 32, 188–200.

P. Dvořák; V. de Lorenzo; Metab. Eng., 2018, 48, 94–108.

F.D. Bora; C.I. Bunea; R. Chira; A. Bunea; Molecules, 2020, 25, 750; doi:10.3390/molecules25030750.

A. Donici; C.I. Bunea; A. Calugar; E. Harsan; I. Racz; F.D. Bora; Bulletin UASVM Horticulture, 2018, 75 (2), 127-132.

Christian Penny, Stephane Vuilleumier & Francoise Bringel; FEMS Microbiol Ecol, 2010, 74, 257–275.

ISO 10301:1997: Water quality - Determination of highly volatile halogenated hydrocarbons - Gas-chromatographic methods. 1st ed. (reviewed and confirmed in 2013).

Ana B. Rios Miguel, Mike S.M. Jetten, Cornelia U. Welte; Water Research, 2020, X, 100065.

M.E. Rasche; M.R. Hyman; D.J. Arp; Appl. Environ. Microbiol., 1991, 57, 2986–2994.

Downloads

Published

2021-03-30

How to Cite

STEGARUS, D. I., PALADI, C., LENGYEL, E., TANASE, C., CĂLUGĂR, A., & NICULESCU, V.-C. (2021). A VIABLE STRATEGY FOR THE BIODEGRADATION OF HALOGENATED ORGANIC COMPOUNDS FROM THE WASTEWATER MEDIATED BY PSEUDOMONAS PUTIDA. Studia Universitatis Babeș-Bolyai Chemia, 66(1), 143–152. https://doi.org/10.24193/subbchem.2021.1.11

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 10 11 12 13 14 15 16 17 18 19 > >> 

You may also start an advanced similarity search for this article.