THE DYNAMICS OF HEMERYTHRIN AND HEMERYTHRIN DERIVATIVES

Authors

  • Francisco CARRASCOZA Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania; Institute of Computer Science, Poznan University of Technology, Ul. Piotrowo 2, 61-138, Poznan, Poland; European Centre for Bioinformatics and Genetics ECBiG, Ul. Piotrowo 2, 61-138, Poznan, Poland. https://orcid.org/0000-0003-4311-5951
  • Adrian M.V. BRÂNZANIC Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania; Babeş-Bolyai University, Institute of Interdisciplinary Research in Bio-Nano-Sciences, 42 Treboniu Laurian str., RO- 400271, Cluj-Napoca, Romania. https://orcid.org/0000-0002-4166-0131
  • Radu SILAGHI-DUMITRESCU Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania. *Corresponding author: radu.silaghi@ubbcluj.ro https://orcid.org/0000-0003-3038-7747

DOI:

https://doi.org/10.24193/subbchem.2021.4.29

Keywords:

hemerythrin, molecular dynamics, spin label, blood substitute, diiron.

Abstract

The non-heme diiron protein hemerythrin (Hr) has been considered as a possible alternative for semi-artificial oxygen carriers (“blood substitutes”). Studies on the stability of its octameric structure have been attempted by attaching spin labels to analyze its electron paramagnetic spectroscopy (ESR) signals. Reported here are molecular dynamics results of Hr bound with 1-oxyl-2,2,5,5-tetramethylpyrroline-3methyl (MTSSL) at the Cys51 position. Our results show that the Hr-MTSSL complex is less stable than its native form. These findings help to explain ESR signals obtained experimentally. Also, these results are crucial to understand the limitations of PEGylated spin labels for protein structural analysis and suggest the need or further exploration of other alternatives.

References

D. Hathazi; A. C. Mot; A. Vaida; F. Scurtu; I. Lupan; E. Fischer-Fodor; G. Damian; D. M. Kurtz Jr.; R. Silaghi-Dumitescu; Biomacromolecules 2014, 15, 1920–1927.

S. V Kryatov; E. V Rybak-Akimova; S. Schindler; Chem Rev 2005, 105, 2175–2226.

E. Fischer-Fodor; A. Mot; F. Deac; M. Arkosi; R. Silaghi-Dumitrescu; J Biosci 2011, 36, 215–221.

M. Arkosi; F. Scurtu; A. Vulpoi; R. Silaghi-Dumitrescu; D. M. Kurtz Jr.; Artif Cells Blood Substitutes Biotechnol 2017, 45, 218–223.

A. C. Mot; A. Roman; I. Lupan; D. M. Kurtz Jr.; R. Silaghi-Dumitrescu; Protein J 2010, 29, 387–393.

V. A. Toma; A. D. Farcas; I. Roman; B. Sevastre; D. Hathazi; F. Scurtu; G. Damian; R. Silaghi-Dumitrescu; Int J Biol Macromol 2017, 107, 1422–1427.

F. Scurtu; B. Tebrean; M. K. Árkosi; A. Ionele; R. Silaghi-Dumitrescu; Stud Univ Babes-Bolyai Chem, 2019, 64(2), 421-434.

D. Hathazi; F. Scurtu; C. Bischin; A. Mot; A. Attia; J. Kongsted; R. Silaghi-Dumitrescu; Molecules 2018, 23, E350.

I. M. Takacs; A. Mot; R. Silaghi-Dumitrescu; G. Damian; J Mol Struct 2014, 1073, 18–23.

M. I. Takacs; A. Mot; R. Silaghi-Dumitrescu; G. Damian; Stud Univ Babes-Bolyai Chem 2013, 58, 61–69.

F. Pietra; Chem Biodivers 2017, 14, e1600158.

J. Dunne; A. Caron; P. Menu; A. I. Alayash; P. W. Buehler; M. T. Wilson; R. Silaghi-Dumitrescu; B. Faivre; C. E. Cooper; Biochem J 2006, 399, 513–524.

A. I. Alayash; Free Radic Res 2000, 33, 341–348.

A. I. Alayash; Trends Biotechnol. 2014, 32, 177–185.

D. A. Svistunenko; A. Manole; J Biomed Res 2020, 34, 281–291.

D. M. Kurtz; Essays Biochem 1999, 34, 85–100.

E. Krieger; G. Vriend; Bioinformatics 2014, 30, 2981–2982.

C. S. Farmer; D. M. Kurtz Jr.; Z. J. Liu; B. C. Wang; J. Rose; J. Ai; J. Sanders-Loehr; D. M. Kurtz Jr.; Z. J. Liu; B. C. Wang; J. Rose; J. Ai; J. Sanders-Loehr; J Biol Inorg Chem 2001, 6, 418–429.

H. M. Berman; J. Westbrook; Z. Feng; G. Gilliland; T. N. Bhat; H. Weissig; I. N. Shindyalov; P. E. Bourne; Nucleic Acids Res 2000, 28, 235–242.

R. Dennington; T. Keith; J. Millam; Semichem Inc., Shawnee Mission, KS 2009, Semichem Inc.

J. P. Stewart; J Mol Model 2007, 13, 1173–1213.

E. G. Pettersen; T. D. Goddard; C. C. Huang; G. S. Couch; D. M. Greenblatt; E. C. Meng; T. E. Ferrin; J Comput Chem 2004, 25, 1605–1612.

Y. Duan; C. Wu; S. Chowdhury; M. C. Lee; G. Xiong; W. Zhang; R. Yang; P. Cieplak; R. Luo; T. Lee; J. Caldwell; J. Wang; P. Kollman; J Comput Chem 2003, 24, 1999–2012.

U. Essmann; L. Perera; M. L. Berkowitz; T. Darden; H. Lee; L. G. Pedersen; J Chem Phys 1995, 103, 8577–8593.

W. L. Jorgensen; J Am Chem Soc 1981, 103, 335–340.

Downloads

Published

2021-12-30

How to Cite

CARRASCOZA, F., BRÂNZANIC, A. M., & SILAGHI-DUMITRESCU, R. (2021). THE DYNAMICS OF HEMERYTHRIN AND HEMERYTHRIN DERIVATIVES. Studia Universitatis Babeș-Bolyai Chemia, 66(4), 397–404. https://doi.org/10.24193/subbchem.2021.4.29

Issue

Section

Articles

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.