INFLUENCE OF HIGH SALINITY AND S-METHYLMETHIONINE ON SOME HEALTH-PROMOTING METABOLIC PROPERTIES OF GARDEN ROCKET LEAVES
DOI:
https://doi.org/10.24193/subbchem.2021.4.28Keywords:
ascorbate, carotenoids, phenoloids, lipid peroxidation, salt stress.Abstract
Production of health-promoting substances in plants’ metabolism may be modulated by treatment with chemical stress factors and natural bioactive compounds, which enhance stress tolerance through stimulation of biosynthesis of several protective metabolites. The aim of this work is to reveal metabolic interactions between high salinity stress (exerted by the presence of 100 mM NaCl in the mineral nutrient solution) and treatment of plants with 0.1 mM S-methylmethionine (also known as vitamin U). This plant-derived bioactive compound enhances the production of antioxidants such as carotenoids, ascorbate and other phenoloids in leaves of rocket plantlets exposed to salt stress, while reducing the concentration of toxic malondialdehyde and related catabolic products of membrane lipid peroxidation. Thus, a suitable combination of high salinity and plant hardening with S-methylmethionine may improve the quality of fresh rocket leaves upon human and animal consumption.References
R. Bulgari; G. Franzoni; A. Ferrante; Agronomy, 2019, 9, 306-316
P. du Jardin; L. Xu; D. Geelen; Agricultural functions and action mechanisms of plant biostimulants (PBs). In The Chemical Biology of Plant Biostimulants, D. Geelen; L. Xu, Eds.; Wiley Online Books, Hoboken, USA, 2020, Chapter 1, pp. 1-30
A.L. Garcia-Garcia; F.J. Garcia-Machado; A.A. Borges; S. Morales-Sierra; A. Boto; D. Jimenez-Arias; Front. Plant Sci., 2020, 11, 575829
S. Toscano; A. Trivellini; G. Cocetta; R. Bulgari; A. Francini; D. Romano; A. Ferrante; Front. Plant Sci., 2019, 10, 1212
C. Kaya; M. Ashraf; O. Sonmez; A.L. Tuna; T. Polat; S. Aydemir; Acta Physiol. Plant., 2015, 37, 1729-1741
K. Paldi; I. Racz; Z. Szigeti; S. Rudnoy; Biol. Plant., 2014, 58, 189-194
E. Blumwald; Curr. Opin. Cell Biol., 2000, 12, 431-434
D. Rhodes; A. Nadolska-Orczik; P.J. Rich; Salinity, osmolytes and compatible solutes. In Salinity:Environment-Plant-Molecules, A. Lauchli; U. Luttge, Eds.; Kluwer Academic Publishers, Dordrecht, the Netherlands, 2002, pp. 181-204
C. Ouhibi; H. Attia; F. Rebah; N. Msilini; M. Chebbi; J. Aarrouf; L. Urban; M. Lachaal; Plant Physiol. Biochem., 2014, 83, 126-133
C. Sgherri; U. Perez-Lopez; F. Micaelli; J. Miranda-Apodaca; A. Mena-Petite; A. Munoz-Rueda; M. F. Quartacci; Plant Physiol. Biochem., 2017, 115, 269-278
L. Fodorpataki; B. Holinka; E. Gyorgy; Priming with S-methylmethionine increases non-enzymatic antioxidant content of lettuce leaves exposed to salt stress. In Controlled Environment Agriculture, M. Asaduzzaman, Ed.; Nova Science Publishers, New York, USA, 2016, Chapter 6, pp. 133-164
J. Zhu; Trends Plant Sci., 2001, 6, 66-72
A. Baryla; C. Laborde; J.-L. Montillet; C. Triantaphylides; P. Chagvardieff; Env. Poll., 2000, 109, 131-135
N. Jambunathan; Meth. Mol. Biol., 2010, 639, 291-298
A.D. Patel; N.K. Prajapati; J. Chem. Pharm. Res., 2012, 4, 209-215
P. Ranocha; S.D. McNeil; M.J. Ziemak; C. Li; M.C. Tarczynski; A.D. Hanson; Plant J., 2001, 25, 575-584
L. Fodorpataki; K. Molnar; B. Tompa; S.R.C. Plugaru; Not. Bot. Horti Agrobot., 2019, 47, 592-598
E. Ludmerszki; K. Paldi; I. Racz; Z. Szigeti; S. Rudnoy; Appl. Ecol. Environ. Res., 2014, 12, 777-785
C. Olah; E. Ludmerszki; I. Racz; G. Balassa, S. Rudnoy; Russ. J. Plant Physiol., 2018, 65, 63-68
G. Cocetta; S. Mishra; A. Raffaelli; A. Ferranta; J. Plant Physiol., 2018, 231, 261-270
N. Smirnoff; Ascorbate, tocopherol and carotenoids: metabolism, pathway engineering and functions. In Antioxidants and Reactive Oxygen Species in Plants, N. Smirnoff, Ed.; Blackwell Publishers, Oxford, United Kingdom, 2005, pp. 53-86
H.K. Lichtenthaler; A.R. Wellburn; Biochem. Soc. Trans., 1983, 11, 591-592
S.S. Gill; N. Tuteja; Plant Physiol. Biochem., 2010, 48, 909-930
L. Fodorpataki; K. Molnar; B. Tompa; C. Bartha; Intl. J. Agric. Biol., 2021, 25, 11-19
Z. Louail; N. Djemouai; S. Krimate; K. Bouti; S. Bouti; H. Tounsi; A. Kameli; Anal. Univ. Oradea, 2020, 27, 215-223
M.-M. Oh; E.E. Carey; C.B. Rajashekar; Plant Physiol. Biochem., 2009, 47, 579-583
V. Mulabagal; M. Ngouajio; A. Nair; Y. Zhang; A.L. Gottumukkala; M.G. Nair; Food Chem., 2010, 118, 300-306
A. Altunkaya; V. Gokmen; Food Chem., 2008, 107, 1173-1179
R. Llorach; A. Martinez-Sanchez; F.A. Tomas-Barberan; M.I. Gil; F. Ferreres; Food Chem., 2008, 1028-1038
V.L. Singleton; R. Orthofer; R.M. Lamuela-Raventos; Meth. Enzymol., 1999, 299, 152-178
S.K. Panda; I. Chaudhury; M.H. Khan; Biol. Plant., 2003, 46, 289-294
K. Kampfenkel; M. van Montagu; D. Inze; Anal. Biochem., 1995, 225,165-167
C. Xu; S. Natarajan; J.H. Sullivan; Env. Exp. Bot, 2008, 63, 39-48
K. Molnar; B. Biro-Janka; I.I. Nyaradi; L. Fodorpataki; B.E. Varga; J. Balint; M.M. Duda; Acta Biol. Maris., 2020, 3, 48-55
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.