BIOANALYSIS OF TOTAL PHENOLIC CONTENTS, VOLATILE COMPOUNDS, AND RADICAL SCAVENGING ACTIVITIES OF THREE WILD EDIBLE MUSHROOMS

Authors

  • Ahmet Metin KUMLAY Iğdır University, Faculty of Agriculture, Department of Field Crops, Iğdır, Turkey.
  • Mehmet Zeki KOÇAK Iğdır University, College of Applied Science, Department of Organic Farming, Iğdır, Turkey. https://orcid.org/0000-0002-8368-2478
  • Mubin KOYUNCU Iğdır University, Faculty of Engineering, Department of Food Engineering, Iğdır, Turkey. https://orcid.org/0000-0003-1798-8943
  • Uğur GÜLLER Iğdır University, Faculty of Engineering, Department of Food Engineering, Iğdır, Turkey. *Corresponding author: ugur.guller@igdir.edu.tr

DOI:

https://doi.org/10.24193/subbchem.2021.4.10

Keywords:

Chlorophyllum agaricoides, volatile compounds, Mycenastrum corium, Paxina queletii, phenolic content, radical scavenging.

Abstract

Mushrooms are popular food for a long time because of their high nutritional value and many pharmaceutical properties. In that context, analyzing the contents and some antioxidant properties of three wild edible mushrooms, Paxina queletii, Chlorophyllum agaricoides, and Mycenastrum corium, is important in terms of emphasizing the values of these species in nutrition. For this propose, firstly total phenolic and flavonoid contents and radical scavenging activities were assayed. Then, quantitative analysis of phenolic and volatile compounds was performed by HPLC and GC-MS. The findings of the study revealed that Mycenastrum corium has the highest total phenolic and flavonoid content with the amount of 4.17 mg GAE/g and 1.58 mg QE/g respectively. However, DPPH˙ and ABTS˙+ radical scavenging activities of C. agaricoides were found higher with the IC50 values of 20.0 µg/mL and 6.4 µg/mL. Chromatographic analysis revealed that 5 alcohols, 14 aldehydes and ketones, 2 esters, 17 alkanes-heterocyclic compounds, and 4 acids were the major contributors of the antioxidant activities of the extracts. Regarding HPLC analysis, gallic acid, naringin and trans-cinnamic were found to be major phenolic compounds available for three species.

References

M. Dimitrijević; V. Stankov Jovanović; J. Cvetković; M. Mitić; G. Petrović; A. Đorđević, and V. Mitić; Anal. Lett., 2017, 50(10), 1691-1709.

M. Zhang; S. Cui; P. Cheung, and Q. Wang; Trends Food Sci. Technol., 2007, 18(1), 4-19.

J. Falandysz and J. Borovička; Appl. Microbiol. Biotechnol., 2013, 97(2), 477-501.

A.S. Bengu; Prog. Nutr., 2019, 21(1), 189-193.

M.J. Feeney; A.M. Miller, and P. Roupas; Nutr. today, 2014, 49(6), 301.

P. Kalač; J. Sci. Food Agric., 2013, 93(2), 209-218.

W.M. Breene; J. Food Protect., 1990, 53(10), 883-894.

E.E. Ak; Y. Tüzel; E. Eren, and F. Atilla; Türk Tarım-Gıda Bilim ve Teknoloji dergisi, 2016, 4(3), 239-243.

S.N. Lotfy; H.H. Fadel; A.H. El-Ghorab, and M.S. Shaheen; Food Chem., 2015, 187, 7-13.

H.N. Bao; H. Ushio, and T. Ohshima; J. Agric. Food Chem., 2008, 56(21), 10032-10040.

C.L. Dikeman; L.L. Bauer; E.A. Flickinger, and G.C. Fahey; J. Agric. Food Chem., 2005, 53(4), 1130-1138.

P. Kalač and L.r. Svoboda; Food chemistry, 2000, 69(3), 273-281.

W.Y. Lee; E.-J. Park; J.K. Ahn, and K.-H. Ka; Mycobiology, 2009, 37(1), 43-47.

A.S. Logan; U. Nienaber, and X.S. Pan; Lipid oxidation: Challenges in food systems. 2015, Elsevier.

A.J. Weigand-Heller; P.M. Kris-Etherton, and R.B. Beelman; Prev. Med., 2012, 54, S75-S78.

L. Barros; M.-J. Ferreira; B. Queiros; I.C. Ferreira, and P. Baptista; Food Chem., 2007, 103(2), 413-419.

S. Khatun; A. Islam; U. Cakilcioglu; P. Guler, and N.C. Chatterjee; NJAS-Wageningen J. Life Sci., 2015, 72, 1-5.

C. Rice-Evans; N. Miller, and G. Paganga; Trends Plant Sci., 1997, 2(4), 152-159.

E. Bernaś; G. Jaworska, and Z. Lisiewska; Acta Scientiarum Polonorum Technologia Alimentaria, 2006, 5(1), 5-20.

I. Fasidi and M. Kadiri; Food/Nahrung, 1990, 34(5), 415-420.

H. Sivrikaya; L. Bacak; A. Saraçbaşı; I. Toroğlu, and H. Eroğlu; Food Chem., 2002, 79(2), 173-176.

S. Hazama; S. Watanabe; M. Ohashi; M. Yagi; M. Suzuki; K. Matsuda; T. Yamamoto; Y. Suga; T. Suga, and S. Nakazawa; Anticancer Res., 2009, 29(7), 2611-2617.

P. Yang; M. Liang; Y. Zhang, and B. Shen; Adv. Ther., 2008, 25(8), 787-794.

P. Kalač; Food Chem., 2009, 113(1), 9-16.

R. Genders; Mushroom growing for everyone. 1982, Faber and Faber.

P. Oei; Manual on mushroom cultivation: techniques, species and opportunities for commercial application in developing countries. 1991, Tool.

A. Turkoglu; M.E. Duru; N. Mercan; I. Kivrak, and K. Gezer; Food Chem., 2007, 101(1), 267-273.

S. Kavishree; J. Hemavathy; B. Lokesh; M. Shashirekha, and S. Rajarathnam; Food Chem., 2008, 106(2), 597-602.

B. Ribeiro; R. Lopes; P.B. Andrade; R.M. Seabra; R.F. Gonçalves; P. Baptista, and I. Quelhas; Food Chem., 2008, 110(1), 47-56.

K. Slinkard and V.L. Singleton; Am. J. Enol. Vitic., 1977, 28(1), 49-55.

Y.K. Park; M.H. Koo; M. Ikegaki, and J. Contado; Arq. Biol. Tecnol, 1997, 97-106.

W. Brand-Williams; M.-E. Cuvelier, and C. Berset; LWT-Food Sci Technol., 1995, 28(1), 25-30.

U. Güller; P. Güller, and M. Çiftci; Alternative Therapies in Health and Medicine, 2020.

B. Cemeroğlu; Gıda Analizleri (Editör: B. Cemeroğlu). Ankara, Türkiye: Gıda Teknolojisi Derneği Yayınları, 2010, (34), 87-93.

Y. Tian; Y. Zhao; J. Huang; H. Zeng, and B. Zheng; Food Chem., 2016, 197, 714-722.

M. Koyuncu and Y. Tuncturk; Oxidation Commun., 2017, 40(2), 785-798.

S.P. Wasser and A.L. Weis; Critical Reviews™ in Immunology, 1999, 19(1).

N.G. Puttaraju; S.U. Venkateshaiah; S.M. Dharmesh; S.M.N. Urs, and R. Somasundaram; J. Agric. Food Chem., 2006, 54(26), 9764-9772.

P. Roupas; J. Keogh; M. Noakes; C. Margetts, and P. Taylor; J. Funct. Foods, 2012, 4(4), 687-709.

D. Stojković; F.S. Reis; L. Barros; J. Glamočlija; A. Ćirić; L.J. van Griensven;

M. Soković, and I.C. Ferreira; Food Chem.Toxicol., 2013, 59, 289-296.

K. Liu; X. Xiao; J. Wang; C.-Y.O. Chen, and H. Hu; LWT-Food Sci. Technol., 2017, 82, 154-161.

L. Smolskaitė; P.R. Venskutonis, and T. Talou; LWT-Food Sci. Technol., 2015, 60(1), 462-471.

J. Liu; L. Jia; J. Kan, and C.-h. Jin; Food Chem. Toxicol., 2013, 51, 310-316.

S. Sezgin; A. Dalar, and Y. Uzun; J. Food Sci. Technol., 2020, 57(5):1866–1876.

J. Azieana; M. Universiti Teknologi; S. Alam; M. Universiti Teknologi; S. Alam; M. Universiti Teknologi; S. Alam; M. Universiti Teknologi, and S. Alam; Open Access Library Journal, 2017, 4(11), 1.

E. López-Vázquez; F. Prieto-García; M. Gayosso-Canales; E.O. Sánchez, and J.V. Ibarra; Italian J. Food Sci., 2017, 29(4).

D.A. Abugri and W.H. McElhenney; J Nat Prod Plant Resour, 2013, 3(3), 37-42.

C. Gan; N.B. Amira, and R. Asmah; Int. Food Res. J., 2013, 20(3), 1095.

F.C. Wong; T.-T. Chai; S.-L. Tan, and A.-L. Yong; Tropical J. Pharm. Res., 2013, 12(6), 1011-1016.

L. Barros; S. Falcão; P. Baptista; C. Freire; M. Vilas-Boas, and I.C. Ferreira; Food Chem., 2008, 111(1), 61-66.

A.C. Ramírez‐Anguiano; S. Santoyo; G. Reglero, and C. Soler‐Rivas; J. Sci.Food Agric., 2007, 87(12), 2272-2278.

F.S. Reis; A. Martins; L. Barros, and I.C. Ferreira; Food Chem. Toxicol., 2012, 50(5), 1201-1207.

J.M. Savoie; N. Minvielle, and M.L. Largeteau; J. Sci. Food Agric., 2008, 88(6), 970-975.

A. Dundar; V. Okumus; S. Ozdemir; K.S. Celik; M. Boga; E. Ozcagli; G. Ozhan, and A. Yildiz; J. Horticulture, 2015, 1-6.

G. Tel; M. Ozturk; M.E. Duru, and A. Turkoglu; Pharm. Biol., 2015, 53(6), 824-830.

G. Tel; E. Deveci; S. Küçükaydın; M.A. Özler; M.E. Duru, and M. Harmandar; Eurasian J. Anal. Chem., 2014, 8(3), 136-147.

H. Aisala; J. Sola; A. Hopia; K.M. Linderborg, and M. Sandell; Food Chem., 2019, 283, 566-578.

R.L. Berendsen; S.I. Kalkhove; L.G. Lugones; J.J. Baars; H.A. Wösten, and P.A. Bakker; Appl. Microbiol. Biotechnol., 2013, 97(12), 5535-5543.

F. Pei; W. Yang; N. Ma; Y. Fang; L. Zhao; X. An; Z. Xin, and Q. Hu; LWT-Food Sci. Technol., 2016, 72, 343-350.

J.L. Mau; R.B. Beelman, and G.R. Zigler; J. Food Sci., 1992, 57(3), 704-706.

M. Aneja; T.J. Gianfagna, and P.K. Hebbar; Physiol. Mol. Plant Pathol., 2005, 67(6), 304-307.

J. Bennett; R. Hung; S. Lee, and S. Padhi; Fungal associations, 2012, 373-393.

S. Grosshauser and P. Schieberle; J. Agric. Food Chem., 2013, 61(16), 3804-3813.

R. Ciriminna; A. Fidalgo; L.M. Ilharco, and M. Pagliaro; Biofuel Bioprod Biorefin, 2019, 13(6), 1476-1482.

S. Sezgin; A. Dalar, and U. Yusuf; Int. J. Second. Metab., 2018, 5(2), 163-170.

B. Badhani; N. Sharma, and R. Kakkar; Rsc Advances, 2015, 5(35), 27540-27557.

R. Chen; Q.-L. Qi; M.-T. Wang, and Q.-Y. Li; Pharm. Biol., 2016, 54(12), 3203-3210.

M. Sova; Mini Rev. Med. Chem., 2012, 12(8), 749-767.

K.S. Letsididi; Z. Lou; R. Letsididi; K. Mohammed, and B.L. Maguy; Lwt, 2018, 94, 25-32.

S. Yilmaz; M. Sova, and S. Ergün; J. Appl. Microbiol., 2018, 125(6), 1714-1727.

S. Adisakwattana; K. Sookkongwaree; S. Roengsumran; A. Petsom; N. Ngamrojnavanich; W. Chavasiri; S. Deesamer, and S. Yibchok-anun; Bioorg. Med. Chem. Lett., 2004, 14(11), 2893-2896.

Downloads

Published

2021-12-30

How to Cite

KUMLAY, A. M., KOÇAK, M. Z., KOYUNCU, M., & GÜLLER, U. (2021). BIOANALYSIS OF TOTAL PHENOLIC CONTENTS, VOLATILE COMPOUNDS, AND RADICAL SCAVENGING ACTIVITIES OF THREE WILD EDIBLE MUSHROOMS. Studia Universitatis Babeș-Bolyai Chemia, 66(4), 133–148. https://doi.org/10.24193/subbchem.2021.4.10

Issue

Section

Articles

Similar Articles

<< < 4 5 6 7 8 9 10 11 12 13 > >> 

You may also start an advanced similarity search for this article.