TESTING OF NEW EXPERIMENTAL GIOMERS: WATER SORPTION, CONVERSION DEGREE, RADIOPACITY, MICROSTRUCTURE AND BIOLOGICAL BEHAVIOR
DOI:
https://doi.org/10.24193/subbchem.2022.1.12Keywords:
giomer, conversion, water sorption, radiopacity, SEM, biocompatibility.Abstract
Two experimental giomers (G1 and G2) were obtained and then evaluated for water sorption- by weighing the specimens before and after water immersion, for conversion degree (DC)- by Fourier Transform Infrared Spectrometry, for radiopacity- by using the intraoral sensor system Ez Sensor 1.5 Vatech E-Woo (Korea), in relation to their microstructural characteristics assessed by Scanning Electron Microscopy (SEM). They were compared to a commercial giomer: Beautifil II. Both experimental and commercial giomers were also tested by subcutaneous and intramuscular implantation tests, to establish and compare their biological behavior. Intensity of the inflammatory reaction, tissue repair status and the presence of the capsule were the main criteria assessed. After 7 days, the mean values of DC were: 65.8% (Beautifil II), 62.2% (G2) and 60.5 (G1). DC increased after the initial polymerization. Giomers showed mean values of water sorption, below 40 µg/mm3. A certain swelling of the polymer matrix without dislocations of particles could be seen on SEM images. The mean values of radiopacity were between 2.15-2.99 [mmAl]. Giomers were slight to moderate irritants for soft tissues, with no significant difference between the samples. Promising results make G1 and G2 possible alternative to Beautifil II, that can be further improved.
References
S. Kimyai; M. Bahari; F. Naser-Alavi; S. Behboodi; J. Clin. Exp. Dent., 2017, 9(2), e249-253.
M.E. Rusnac; C. Gasparik; A.G. Delean; A.I. Aghiorghiesei; D. Dudea; Med. Pharm. Rep., 2021, 94, 99–105.
M.E. Rusnac; D. Prodan; S. Cuc; I. Petean; C. Prejmerean; C. Gasparik; M. Moldovan; Mater., 2021,14(9), 2399.
U.M. Abdel-Karim; M. El-Eraky; W.M. Etman; Tanta Dent. J., 2014, 11, 213–222.
N.Gonulol; S.Ozer; E. Sen Tunc; J. Esthet. Restor. Dent., 2015, 27(5), 300-306.
D.A. Saba; F.K. Abdel Gawad; M.A. Abd Ellatif; Egypt. Dent. J. 2017, 63, 205–214.
L. Colceriu-Burtea; C. Prejmerean; D. Prodan; I. Baldea; M. Vlassa; M. Filip; I. Ambrosie; 2019, Mater., 12(23), 4021.
Z. Tarle; M. Par; Degree of Conversion. In Dental Composite Materials for Direct Restorations, V. Miletic Eds.; Springer Interational Publishing AG, Cham, Switzerland, 2017, Chapter 5, pp. 63-85.
P. Panpisut; A. Toneluck; Dent. Mater. J., 2020, 39(4), 608-615.
T. Hitij; A. Fidler; Clin. Oral. Investig., 2013, 17, 1167-77.
T. Yildirim; M.K. Ayar; M.S. Akdag; C. Yesilyurt; Niger. J. Clin. Pract., 2017, 20, 200-204.
J.L. Ferracane; Dent. Mater., 2006, 22.3, 211-222.
P. Yu; A.U.J.Yap; X.Y. Wang; Oper. Dent., 2017, 42(1), 82-89.
M.E. Rusnac; D. Prodan; M. Moldovan; S. Cuc; M. Filip; C. Prejmerean; D. Dudea; Appl. Sci., 2021, 11, 8921.
Noor Saira Wajid Najma Hajira; N Meena; Int. J. Dent. Oral Health, 2015, 2(4): doi http://dx.doi.org/10.16966/2378-7090.166.
ISO 4049 Dentistry — Polymer-based restorative materials. International Organisation for standardization, pp 18-21.
S.A. Kareem; R.H. Jehad; J. Bagh. Coll. Dent., 2012, 24(3), 25-28.
H. Cui; G.S.P. Cheung; Lee-hoi Kei; S. Wei; J. Adhes. Dent., 2002; 4(1), 61-71.
F.L.E. Florez; H. Kraemer; R.D.Hiers; C.M.Sacramento; A.J.Rondinone; K. Gonzales Silvério; S.S. Khajotia; Sci. Rep., 2020,10(1) doi:10.1038/s41598-020-70487-z.
M.A. Zankulia; H. Devlin; Silikasa N; Dent. Mater., 2014, 30, e324–e329.
ISO 4049 Dentistry — Polymer-based restorative materials. International Organisation for standardization, pp 4.
S.K. Gupta; P. Saxena; V.A. Pant; A.B. Pant, Toxicol. Int., 2012, 19(3), 225.
M. Moldovan; I.R. Balazs; A. Soanca; A. Roman; C. Sarosi; D. Prodan; M. Vlassa; I. Cojocaru; V. Saceleanu; I. Cristescu; Mater., 2019, 12 (13), 2109.
M.A. Moldovan; A.B. Bosca; R.C. Roman; H. Rotar; C. Prejmerean; D. Prodan; P. Bere; C, Cosma; D. Festila; M.C. Ghergie; Mater. Plast., 2020, 57, 131-139.
B. Swetha; S. Mathew; B.V. Sreenivasa; N. Shruthi; S.H. Bhandi; Int. Dent. Med. J. Adv. Res., 2015, 1, 1-6.
S. Tamilselvam; M.J. Divyanand; P. Neelakantan; J. Clin. Pediatr. Dent., 2013, 37(4), 403-406.
C. Prejmerean; D. Prodan; M. Vlassa; M. Streza; T. Buruiana; L. Colceriu; V. Prejmerean; S. Cuc; M. Moldovan; Meas. Sci. Technol., 2016, 27, 124008, doi:10.1088/0957-0233/27/12/124008.
T. Buruiana; M. Nechifor; V. Melinte; V. Podasca; E.C. Buruiana; J. Biomater. Sci. Polym., 2014, 25(8), 749-65. doi: 10.1080/09205063.2014.905029.
I. Hodisan; C. Prejmerean; I. Petean; D. Prodan; T. Buruiana; L. Colceriu; L. Barbu-Tudoran; M. Tomoaia-Cotisel; Stud. Univ. Babes-Bolyai, Chem., 2017, 62 (4), 143-154.
C. Prejmerean; M. Moldovan; C. Petrea; D. Prodan; L. Silaghi-Dumitrescu; V. Eugeniu; G. Furtos; S. Boboia; R. Silaghi-Dumitrescu; Mater. Plast., 2011, 48(4), 279-284.
V. Prejmerean; L. Silaghi-Dumitrescu; D. Prodan; C. Prejmerean; M. Moldovan; Key Eng. Mater., 2014, 587, 121-127.
N. Simsek; L. Akinci; O. Gecor; H. Alan; F. Ahmetoglu; E. Taslidere; Eur. J. Dent., 2015, 9(1), 31-35.
M.A. Lazar; H. Rotaru; I. Bâldea; A.B. Bosca, C.P. Berce; C. Prejmerean; D. Prodan; R.S. Câmpian; J. Craniofac. Surg., 2016, 27(7), 1694-1699.
M.A. Lazar; M. Filip; M.C. Vlassa, L.A. Sorcoi, R.S. Câmpian, C. Prejmerean; Rev. Rom. Mater., 2016, 46(2), 142-151
ISO 10993-6:2007, Biological evaluation of medical devices- Part 6: Tests for local effects after implantation.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.