GREENNESS AND WHITENESS PROFILES OF UV/VIS PHOTOCHEMICAL VAPOR GENERATION CAPACITIVELY COUPLED PLASMA MICROTORCH OPTICAL EMISSION SPECTROMETRY METHOD FOR MERCURY DETERMINATION AND SPECIATION IN FOOD AND WATER

Authors

  • Eniko COVACI Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania; Babes-Bolyai University, Research Center for Advanced Analysis, Instrumentation and Chemometrics, ANALYTICA, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania. *Corresponding author: eniko.covaci@ubbcluj.ro https://orcid.org/0000-0002-8453-9155
  • Tiberiu FRENTIU Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania; Babes-Bolyai University, Research Center for Advanced Analysis, Instrumentation and Chemometrics, ANALYTICA, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania. https://orcid.org/0000-0001-6670-3380

DOI:

https://doi.org/10.24193/subbchem.2022.1.01

Keywords:

greenness and whiteness profile, mercury speciation, capacitively coupled plasma microtorch.

Abstract

The aim of the study was the evaluation of greenness and whiteness profiles of UV/Vis photo-induced cold vapor generation (UV/Vis-PVG) capacitively coupled plasma microtorch optical emission spectrometry methods for Hg determination and speciation as CH3Hg+ and Hg2+. Sample preparation for CH3Hg+ determination in fish tissue consisted of an extraction in HBr–toluene–aqueous L-cysteine solution and UV-PVG in 0.6 mol L-1 HCOOH. Total Hg was determined in food samples following ultrasound assisted extraction in concentrated HCOOH and UV-PVG. Hg speciation was based on extraction in HCOOH and UV/Vis selective derivatization of total Hg/Hg2+. The greenness profile was assessed by National Environmental Methods Index, Analytical Eco-Scale, Green Analytical Procedure Index and Analytical Greenness Metric, while the whiteness profile was evaluated using the Red–Green–Blue (RGB) 12 algorithm. The methods, based on miniaturized instrumentation, were characterized by a higher greenness and whiteness compared to the traditional SnCl2 cold vapor generation inductively coupled plasma optical emission spectrometry, SnCl2 cold vapor generation atomic fluorescence spectrometry, and sometimes than that of thermal decomposition atomic absorption spectrometry. This study is a novelty because, to the best of our knowledge, is the first approach of this kind for Hg determination and speciation based on optical emission spectrometry using a fully miniaturized instrumentation.

References

J.A. Linthorst; Found. Chem., 2010, 12, 55-68.

B.A. de Marco; B.S. Rechelo; E.G. Totoli; A.C. Kogawa; H.R.N. Salgado; Saudi Pharm. J., 2019, 27, 1-8.

J.C. Warner; P.T. Anastas; Green chemistry: Theory and Practice, Oxford University Press, New York, US, 1998.

Galuszka; Z. Migaszewski; J. Namiesnik; TrAC, Trends Anal. Chem., 2013, 50, 78-84.

M. de la Guardia; S. Garrigues. Challenges in Green Analytical Chemistry, 2nd ed., The Royal Society of Chemistry, Cambridge, UK, 2020.

J.A. Tickner; M. Becker; Curr. Opin. Green Sustain. Chem., 2016, 1, 1-4.

L.H. Keith; L.U. Gron; J.L. Young; Chem. Rev., 2007, 107, 2695-2708.

J.J.D. Douglas Raynie; Green assessment of chemical methods. In: 13th Annual Green Chemistry and Engineering Conference, Maryland, 2009.

Galuszka; Z.M. Migaszewski; P. Konieczka; J. Namiesnik; TrAC, Trends Anal. Chem., 2012, 37, 61-72.

J. Plotka-Wasylka; Talanta, 2018, 181, 204-209.

Ballester-Caudet; P. Campins-Falco; B. Perez; R. Sancho; M. Lorente; G. Sastre; C. Gonzalez; TrAC, Trends Anal, Chem., 2019, 118, 538-547.

M.B. Hicks; W. Farrell; C. Aurigemma; L. Lehmann; L. Weisel; K. Nadeau; H. Lee; C. Moraff; M. Wong; Y. Huang; P. Ferguson; Green Chem., 2019, 21, 1816-1826.

F. Pena-Pereira; W. Wojnowski; M. Tobiszewski; Anal. Chem., 2020, 92, 10076-10082.

M. Sajid; M. Asif; I. Ihsanullah; Microchem. J., 2021, 169, article number 106565.

Gutierrez-Serpa; R. Gonzalez-Martin; M. Sajid; V. Pino; Talanta, 2021, 225, article number 122053.

K.P. Kannaiah; A. Sugumaran; H.K. Chanduluru; S. Rathinam; Microchem. J., 2021, 170, article number 106685.

M. Gamal; I. A. Naguib; D.S. Panda; F.F. Abdallah; Anal. Methods, 2021, 13, 369-380.

H.M. Marzouk; E.A. Ibrahim; M.A. Hegazy; S.S. Saad; Biomed. Chromatogr., 2021, 35, article number e5132

D. Mohamed; M.M. Fouad; Microchem. J., 2020, 157, article number 104873.

S. Rathinam; L.K. Santhana; Processes, 2021, 9, article number 1272.

P.M. Nowak; R. Wietecha-Posluszny; J. Pawliszyn; TrAC, Trends Anal. Chem., 2021, 138, article number 116223.

M. Tobiszewski; Anal. Methods, 2016, 8, 2993-2999.

S.G.J. Calderon; F. Cordeiro; B. de la Calle. Determination of methylmercury in seafood by direct mercury analysis: standard operating procedure, JRC Technical Reports, European Comission, Institute for Reference Materials and Measurements, Geel, Belgium, February 2013 (https://ec.europa.eu/jrc/sites/default/files/Full%20JRC%20Tecnical%20report%20SOP.pdf) (Accessed 13 January 2022).

E. Covaci; M. Senila; M. Ponta; E. Darvasi; D. Petreus; M. Frentiu; T. Frentiu; Talanta, 2017, 170, 464-472.

E. Covaci; M. Senila; M. Ponta; E. Darvasi; M. Frentiu; T. Frentiu; Food Control, 2017, 82, 266-273.

E. Covaci; M. Senila; C. Tanaselia; S.B. Angyus; M. Ponta; E. Darvasi; M. Frentiu; T. Frentiu; J. Anal. At. Spectrom., 2018, 33, 799-808.

E. Covaci; S.B. Angyus; M. Senila; M. Ponta; E. Darvasi; M. Frentiu; T. Frentiu; Microchem. J., 2018, 141, 155-162.

Downloads

Published

2022-03-30

How to Cite

COVACI, E., & FRENTIU, T. (2022). GREENNESS AND WHITENESS PROFILES OF UV/VIS PHOTOCHEMICAL VAPOR GENERATION CAPACITIVELY COUPLED PLASMA MICROTORCH OPTICAL EMISSION SPECTROMETRY METHOD FOR MERCURY DETERMINATION AND SPECIATION IN FOOD AND WATER. Studia Universitatis Babeș-Bolyai Chemia, 67(1), 7–25. https://doi.org/10.24193/subbchem.2022.1.01

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.