STUDY ON THE CORROSION INHIBITION EFFICIENCY OF ALUMINUM TRIPOLYPHOSPHATE ON ZINC SUBSTRATE

Authors

  • Julia BOTH Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering Department of Chemical Engineering, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania. julia.both@ubbcluj.ro https://orcid.org/0000-0001-6116-519X
  • Gabriella SZABÓ Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, Department of Chemistry and Chemical Engineering of Hungarian Line, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania. gabriella.szabo@ubbcluj.ro https://orcid.org/0000-0002-7083-9106
  • Liana-Maria MUREȘAN Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering Department of Chemical Engineering, 11 Arany Janos str., RO-400028, Cluj-Napoca, Romania. limur@chem.ubbcluj.ro https://orcid.org/0000-0002-2891-2947

DOI:

https://doi.org/10.24193/subbchem.2022.4.17

Keywords:

zinc; silicon dioxide; chitosan; Al-tripolyphosphate; anti-corrosion coating; adsorption.

Abstract

The aim of the present study was the electrochemical investigation of the inhibition efficiency of aluminum-tripolyphosphate (ATPP) incorporated in silica (SiO2) and chitosan (Chit) coatings prepared on zinc substrates. Coatings were prepared by dip-coating method. Electrochemical characterization of the coatings was performed by using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves (PDP). Effect of ATPP on Zn was also determined in 0.2g/L Na2SO4 solution and its adsorption on zinc was studied. Results concluded that the ATPP adsorption on Zn obeys Langmuir isotherm. The best corrosion resistance was reached when Zn was protected by SiO2 coating, obtained from a precursor sol containing 10-3 M ATPP.

References

R.M. Park, J.F. Bena, L.T. Stayner, R.J. Smith, H.J. Gibb, P.S.J. Lees, Risk Anal., 2004, 24, 1099–1108

S.B. Lyon, R. Bingham, D.J. Mills, Prog. Org. Coat., 2017, 102(A), 2-7

J. Both, R. Mezei, G. Szabó, L. M. Mureșan, Prot. Met. Phys. Chem., 2022, 58(4), 822–833

K. Saravanan, S. Sathiyanarayanan, S. Muralidharan, S. Syed Azim, G. Venkatachari, Prog. Org. Coat., 2007, 59(2), 160–167

J. Both, G. Szabó, G. Katona, L.M. Mureșan, J. Electrochem. Sci, 2022, 12(4)

Á.F. Szőke, G. Szabó, Z. Hórvölgyi, E. Albert, L. Gaina, L.M. Muresan, Carbohydr. Polym., 2019, 215, 63–72

Á.F. Szőke, G. Szabó, Z. Simó, Z. Hórvölgyi, E. Albert, A.G. Végh, L. Zimányi, L.M. Muresan, Eur. Polym. J., 2019, 118, 205–212

H. Ashassi-Sorkhabi, A. Kazempour, Carbohydr. Polym., 2020, 237, 116110

J. Carneiro, J. Tedim, S.C.M. Fernandes, C.S.R. Freire, A.J.D. Silvestre, A. Gandini, M.G.S. Ferreira, M.L. Zheludkevich, Prog. Org. Coat., 2012, 75(1–2), 8–13

J. Carneiro, J. Tedim, M.G.S. Ferreira, Prog. Org. Coat., 2015, 89, 348–356

A.F. Bettencourt, C. Tomé, T. Oliveira, V. Martin, C. Santos, L. Gonçalves, M.H. Fernandes, P.S. Gomes, I.A.C. Ribeiro, Carbohydr. Polym., 2021, 254, 117433

E. Luckachan, V. Mittal, Corros. Sci. Technol., 2016, 15(5), 209–216

W.J. van Ooij, D. Zhu, V. Palanivel, et al., Silicon Chem, 2006, 3,11–30.

T.R. Ovari, G. Katona, G. Szabo, L. M. Muresan, Studia UBB Chemia, 2022, 67(1), 227–244

I.S. Bayer, Coatings, 2017, 7, 12

M Yeganeh, M. Omidi, S.H.H. Mortazavi, A. Etemad, M.H. Nazari, S.M. Marashi, MNT, 2020, 275–294

J.M. Falcón, F.F. Batista, I.V. Aoki, Electrochim. Acta, 2014, 124, 109–118

C.A. Milea, C. Bogatu, A. Duta, Bull. Trans. Univer. Braşov ser. I Eng. Sci., 2011, 4(53)

E. Volentiru, M. Nyári, G. Szabó. Z. Hórvölgyi, L.M. Mureșan, Period. Polytech. Chem. Eng., 2014, 58(Supplement), 61–66

E. Albert, N. Cotolan, N. Nagy, Gy. Sáfrán, G. Szabó, L.M. Mureşan, Z. Hórvölgyi, Micropor. Mesopor. Mater., 2015, 206, 102–113

J. Both, G. Szabó, G. Katona, L.M. Muresan, Mater. Chem. Phys., 2022, 282, 125912

G. Szabó, E. Albert, J. Both, L. Kócs, Gy. Sáfrán, Á.F. Szőke, Z. Hórvölgyi, L.M. Mureşan, Surf. Interfaces., 2019,15, 216–223

N. Cotolan, S. Varvara, E. Albert, G. Szabó, Z. Hórvölgyi, L.M. Muresan, Corros. Eng. Sci. Tech., 2016, 51(5), 373–382

C. Hejjaj, A. Ait Aghzzaf, I. Bouali, R. Hakkou, M. Dahbi, C.B. Fischer, Corros. Sci., 2021, 181,109239

A. Khadiri, R. Saddik, K. Bekkouche, A. Aouniti, B. Hammouti, N. Benchat, M. Bouachrine, R. Solmaz, J. Taiwan Inst. Chem. Eng., 2016, 58, 552–556

A. AïtAghzzaf, B. Rhouta, E. Rocca, A. Khalil, J. Steinmetz, Corros. Sci., 2014, 80, 46–52

W. Li, Z. Fan, X. Li, B. Jiang, F. Yan, Z. Zhang, X. Wang, Prog. Org. Coat., 2019, 135, 483–489

P. Márton, E. Albert, N. Nagy, B. Tegze, G. Szabó, Z. Hórvölgyi, Studia UBB Chemia, 2020, 65(3), 63–79

R. Bostan, S. Varvara, L. Găină, L.M.J. Mureșan, Corros. Sci., 2012, 63, 275–286

D. Song, J. Gao, L. Shen, H. Wan, and X. Li, J. Chem., 2015, 2015

D.Q. Zhang, Q.R. Cai, X.M. He, L.X. Gao, G.D.J. Zhou, Mater. Chem., 2008, 112(2), 353–358

Z. Cui, Y. Xiang, J. Si, M. Yang, Q. Zhang, T.J. Zhang, Carbohydr. Polym., 2008, 73(1), 111–116

Downloads

Published

2022-12-30

How to Cite

BOTH, J., SZABÓ, G., & MUREȘAN, L.-M. (2022). STUDY ON THE CORROSION INHIBITION EFFICIENCY OF ALUMINUM TRIPOLYPHOSPHATE ON ZINC SUBSTRATE. Studia Universitatis Babeș-Bolyai Chemia, 67(4), 261–272. https://doi.org/10.24193/subbchem.2022.4.17

Issue

Section

Articles

Similar Articles

<< < 7 8 9 10 11 12 13 14 15 16 > >> 

You may also start an advanced similarity search for this article.