OPTIMIZATION OF METHYLENE BLUE DYE REMOVAL BY PEANUT HUSK USING PLACKETT-BURMAN DESIGN AND RESPONSE SURFACE METHODOLOGY

Authors

  • Kah-Tong CHAN Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia
  • Siew-Teng ONG Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia Centre for Agriculture and Food Research, Universiti Tunku Abdul Rahman, Jalan Universiti, Bandar Barat, 31900 Kampar, Perak, Malaysia. ongst@utar.edu.my; ongst_utar@yahoo.com

DOI:

https://doi.org/10.24193/subbchem.2022.4.08

Keywords:

Adsorption, Methylene Blue, Peanut husk, Plackett-Burman Design, Response Surface Methodology

Abstract

The ability of peanut husk in removing Methylene Blue (MB) dye solution was studied in this project. The influence of various factors such as contact time, initial dye concentrations, pH and adsorbent dosage were examined in this project in order to study their effects towards the adsorption process. The percentage uptake of MB increases with contact time, pH and adsorbent dosage while it decreases with increasing initial dye concentrations. The functional group on peanut husk was determined using Fourier Transform Infrared Spectrophotometer (FTIR) and its surface morphology was characterized using Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM) analysis. The experimental data fitted well into the pseudo-second-order kinetic model with R2 values close to unity. The experimental data is best fitted with Freundlich isotherm model by having R2 of 0.9927. By using Plackett-Burman design, the factors that can bring significant impact towards the adsorption of MB by peanut husks were determined to be contact time, pH and adsorbent dosage. The optimum condition for the adsorption process was determined by Response Surface Methodology. It was found that the optimum condition was reached at 120 minutes of contact time, pH 10 and 0.035 g of adsorbent.

References

N. Kannan; M.M. Sundaram; Dyes Pigm., 2001, 51, 25-40

S.L. Lee; S.W. Liew; S.T. Ong; Acta Chim. Slov., 2016, 63, 144-153

S.L. Chan; Y.P. Tan; A. H. Abdullah; S.T. Ong; J. Taiwan Inst. Chem. Eng., 2016, 61, 306-315

S.T. Ong; C.K. Seou; Desalination Water Treat., 2013, 52, 7673-7684

M.A.M. Salleh; D.K. Mahmoud; W.A.W.A. Karim; A. Idris; Desalination, 2011, 280, 1-13

S.T. Ong; E.H. Tay; S.T. Ha; W.N. Lee; P.S. Keng; Int. J. Phys. Sci., 2009, 4, 683-690

S.T. Ong; W.N. Lee; P.S. Keng; Y.T. Hung; S.T. Ha; Int. J. Phys. Sci., 2010, 5, 582-595

R. Malik; D.S. Ramteke; S.R. Wate; Indian J. Chem. Technol., 2006, 13, 319-328

S. Sadaf; H.N. Bhatti; J. Taiwan Inst. Chem. Eng., 2013, 45, 541-553

World Agricultural Production, United States Department of Agricultural, USA, 2022, pp. 1-43

Inamuddin; A. Mohammad; A.M. Asiri; Inorganic Pollutants in Wastewater: Methods of Analysis, Removal and Treatment, Materials Research Forum LLC, Millersville, USA, 2017, p. 195

L. Zafar; A. Khan; U. Kamran; S. Park; H.N. Bhatti; Surf. Interfaces, 2022, 31, 101897

B. Kumar; U. Kumar; Korean J. Chem. Eng., 2015, 32, 1655-1666

S. Ricordel; S. Taha; I. Cisse; G. Dorange; Sep. Purif. Technol., 2001, 24, 389-401

L. Das; P. Das; A. Bhowal, C. Bhattachariee; J. Environ. Manage., 2020, 276, 111272.

C.I. Tay; S.T. Ong; J. Phys. Sci., 2019, 30, 137-156.

H.Y. Gan, L.E. Leow, S.T. Ong; Acta Chim. Slov., 2017, 64, 144-158.

M.U. Farooq; M.I. Jalees; A. Iqbal; N. Zahra; A. Kiran; Desalination Water Treat., 2019, 160, 333-342

D. Özer; G. Dursun; A. Özer; J. Hazard. Mater., 2007, 144, 171-179

N.A. Taha; A. El-Maghraby; Glob. Nest J., 2015, 18, 25-37

W. Zou; H. Bai; S. Gao; K. Li; X. Zhao; R. Han; Desalination Water Treat., 2012, 49, 41-56

N. Besharati; N. Alizadeh; S. Shariati; J. Mex. Chem. Soc., 2018, 62, 110-124

N. Tahir; H.N. Bhatti; M. Iqbal; S. Noreen; Int. J. Biol. Macromol., 2017, 94, 210-220

S. Lagergren; Kungl. Svenska Vetenskapsakad. Handl., 1898, 24, 1-39

Y.S. Ho; G. McKay; Process Biochem., 1999, 34, 451-465

I. Langmuir; J. Am. Chem. Soc., 1918, 40, 1361-1403

L. Lonappan; T. Rouissi; R.K . Das; S.K. Brar; A.A. Ramirez; M. Verma; R.Y. Surampalli; J.R. Valero; Waste Manag., 2016, 49, 537–544

L. Meili; P.V.S. Lins; M.T. Costa; R.L. Almeida; A.K.S. Abud; J.I. Soletti; G.L. Dotto; E.H. Tanabe; L. Sellaoui; S.H.V. Carvalho; A. Erto; Prog. Biophys. Mol. Biol., 2019, 141, 60–71

T.C. Egbosiuba; A.S. Abdulkareem; A.S. Kovo; E. A. Afolabi; J.O. Tijani; M. Auta; W.D. Roos; Chem Eng Res Des., 2020, 153, 315–336

H.M.F. Freundlich; J. Phys. Chem., 1906, 57, 385-471

S. Brunauer, P.H. Emmett, E. Teller; J. Am. Chem. Soc., 1938, 60, 309-319

S.T. Ong; C.K. Lee; Z. Zainal; Bioresour. Technol., 2007, 98, 2792-2799

S.T. Ong; E.C. Khoo; P.S. Keng; S.L. Hii; S.L. Lee; Y.T. Hung; S.T. Ha; Desalination Water Treat., 2011, 25, 310-318

Downloads

Published

2022-12-30

How to Cite

CHAN, K.-T., & ONG, S.-T. (2022). OPTIMIZATION OF METHYLENE BLUE DYE REMOVAL BY PEANUT HUSK USING PLACKETT-BURMAN DESIGN AND RESPONSE SURFACE METHODOLOGY. Studia Universitatis Babeș-Bolyai Chemia, 67(4), 121–139. https://doi.org/10.24193/subbchem.2022.4.08

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.