THE EFFECT OF SOLVENT AND TEMPERATURE ON PROTONATION CONSTANTS OF DL-PHENYLALANINE IN DIFFERENT AQUEOUS SOLUTIONS OF METHANOL AT DIFFERENT TEMPERATURES
DOI:
https://doi.org/10.24193/subbchem.2022.4.06Keywords:
protonation constants, DL-Phenylalanine, potentiometric, spectrophotometric, changes of enthalpy, changes of entropy, and changes of Gibbs free energy.Abstract
This research work has two sections. In first section, the equilibrium constant for protonation processes of DL-phenylalanine (K1, and K2) were determined in binary mixed solvents of water–methanol, containing 0, 10, 20, 30, 40, 50, 60, 70, and 80 % (v/v) methanol, at T = 298.15 K and constant ionic strength (0.1 mol.dm-3NaCl). The obtained data (K1, and K2) were analyzed using Kamlet, Abboud, and Taft parameters. In second section, for DL-phenylalanine in aqueous solution, the values K1, and K2 were determined at T = (298.15, 303.15, 308.15, 313.15, and 318.15) K and constant ionic strength (0.1 mol.dm-3NaCl). Using these K1, and K2, the thermodynamic properties (changes of enthalpy, ΔH, changes of entropy, ΔS, and changes of Gibbs free energy, ΔG) were calculated for DL-phenylalanine in aqueous solution. In both sections, the values of K1, and K2 were determined using the spectrophotometric and potentiometric methods.
References
J. Wang; Analytical electrochemistry (3rd ed), 2006, New York, USA.
A. Catsch; A.E. Harmuth-Hoene; J. Pharmacol. Ther. Part A: Chemotherapy, Toxicology and Metabolic Inhibitors, 1976, 1, 30-35.
J.U. Lurie; Handbook of Analytical Chemistry, Mir: Moscow, 1975.
P.D. Bailey; An Introduction to Peptide Chemistry; New York, 1992.
Nomenclature and Symbolism for Amino Acids and Peptides. IUPAC-IUB Joint Commission on Biochemical Nomenclature. 1983.
H. Wan; J. Ulander; J. Expert Opin. Drug Metab. Toxicol, 2006, 2, 139-55.
M. Monajemi; F. Gharib; H. Aghaei; G. Shafiee; A. Thghvamanesh; A. Shamel; J. Main Group Met. Chem, 2003, 26, 39-47.
K.K. Tam; T.N, Krisztina; J. Anal Chim Acta, 2001, 434, 157-176.
T. Komoda; T. Matsunaga; Biochemistry for Medical Professionals, 2015.
I. Wagner; H. Musso; J. Angew. Chem. Int. Ed. Engl.,1983, 22, 816-820.
A. Albert; The determination of ionization constants: a laboratory manual. 2012, Springer, New York City, USA.
G. Thomas; Medicinal Chemistry: An Introduction; 2008, John Wiley and Sons: West Sussex.
M.T. Beck; I. Nagypal; Chemistry of Complex Equilibria, 1990, Ellis Harwood, New York, USA.
D.J. Leggett; The Determination of formation constants. 1985, Modern Inorganic Chemistry. Springer, Boston, USA.
M. Meloun; M. Javurek; J. Havel; Talanta,1986, 33, 513.
F. Kiani; A.A. Rostami; S. Sharifi; A. Bahadori; J. Molecular Structur (Theochem), 2010, 956, 20-25.
F. Kiani; A.A. Rostami; S. Sharifi; A. Bahadori; M.J. Chaichi; J. Chem. Eng. Data. 2010, 55, 2732-2740.
M. Borkovec; M. Brxnda; G.J.M. Koper; B. Spiess; Anal. Appl. Chem. 2002, 56, 695-701.
H. Nagai; K. Kuwabara; G. Carta; J. Chem. Eng. Data. 2008, 53, 3, 619–627.
T.D. Tanalp; A. Doğan; J. Sol. Chem. 2021, 50, 2, 1-12.
T. Nilsson; J. Lantbrukshoegskolans Annaler, 1970, 36, 179-219.
J. Barbosa; D. Barron; J.L. Beltran; S. Buti; J. Talanta, 1998, 45, 817-819.
J. Barbosa; I. Toro; V. Sanz-Nebot; J. Anal. Chim. Acta, B, 1997, 347, 295-301.
R.W. Taft; K.L.M. Abboud; M.J. Kamlet; J. Org. Chem, 1984, 49, 2001-2015.
M.J. Kamlet; J.L.M. Abboud; M.H. Abraham; R.W. Taft; J. Org. Chem, 1983, 48, 2877-2886.
C. Reichardt; Solvents and Solvent Effects in Organic Chemistry, 3rd ed. 2004, VCH, New York, USA.
A. Shamel; A. Saghiri; F. Jaberi; A. Farajtabar; F. Mofidi; S. A. Khorrami; F. Gharib; J. Solution Chem, 2012, 41, 1020-1043.
A. Farajtabar; F. Jaberi; F. Gharib; J. Spectrochim. Acta, 2011, 83, 213-217.
E.J. Billo; Excel for Chemists: A Comprehensive Guide, 2001, 2nd edition, Wiley-VCH.
N. Maleki; B. Haghighi; A. Safavi; J. Microchem, 1999, 62, 229 -238.
G. Akerlof; J. Am Chem. Soc, 1932, 54, 4125-4133.
M. Smiechowski; Chem. Phys. Lett, 2001, 501, 123-129.
J.B. Chaires; J. Annu Rev Biophys, 2008, 37, 135-158.
B.K. Shukla; U. Yadava; M. Roychoudhury; J. Mol. Liq, 2015, 212, 325-330.
M. Ogurlu; J. Microporous. Mesoporous. Mater, 2009, 119, 276-287.
A.Y. Dursun; Biochem. Eng. J, 2006, 28, 187-200.
P.M. Pimentel; M.A.F. Melo; D.M.A. Melo; A.L.C. Assuncao; D.M. Henrique; C.N. Silva; G. González; J. Fuel Process. Technol, 2008, 89, 62-77.
G.B. Savadkoohi; F. Kiani; A. Morsali; Russian J. Phys. Chem. A, 2021, 95, 1, 71-76.
T. Valizadeh; F. Kiani; F. Gharib; F. Zabihi; F. Koohyar; Russian J. Phys. Chem. A, 2020, 94, 1, 88-94.
L. Pehrsson; F. Ingman; a A. Johansson; J. Talanta., 1976, 23, 769-771.
P. Gameiro; S. Reis; J.L.F.C. Lima; B. de Castro; J. Anal. Chim. Acta, 2001, 405, 167-173.
D.A. Skoog; D.M. West; F.J. Holler; S.R. Crouch, Fundamentals of analytical chemistry, 9th Edition, 2013, Cengage Learning.
J.S. Ferrer; E. Couallier; M. Rakib; G. Durand; J. Electrochim. Acta, 2007, 52, 5773-5775.
F. Gharib; F. Farajtabar; A.M. Farahani; F. Bahmani; J. Chem. Eng. Data, 2010, 55 1, 327-332.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.