POLYLACTIC ACID INTER-CHAIN INTERACTIONS
DOI:
https://doi.org/10.24193/subbchem.2022.4.04Keywords:
polylactic acid (PLA), supramolecular, computationalAbstract
Geometry optimization of perpendicular, antiparallel and parallel dimers were employed in order to analyze the relative energy values. The weakest interactions are seen for the perpendicular structures; among those, the strongest are for π, 310, while the DeSantis structure affords no local minimum at all. The strongest interactions are seen with parallel structures – of which the largest interaction energies are with the DeSantis and the π monomers (up to 2.8 and 4.2 kcal/mol per unit of lactic acid, respectively).
References
A. Södergård; M. Stolt; Prog. Polym. Sci. 2002, 27, 1123–1163.
K. Sreekumar; B. Bindhu; K. Veluraja; Polym. from Renew. Resour. 2021, 12, 60–74.
W. Gao; Z. Wang; F. Song; Y. Fu; Q. Wu; S. Liu; Polymers (Basel). 2021, 13, 3492.
J. Orellana Barrasa; A. Ferrández-Montero; B. Ferrari; J.Y. Pastor; Polymers (Basel). 2021, 13, 2899.
J.-W. Park; J.-H. Shin; G.-S. Shim; K.-B. Sim; S.-W. Jang; H.-J. Kim; Polymers (Basel). 2019, 11, 349.
G. Zhao; F.P.C. Gomes; H. Marway; M.R. Thompson; Z. Zhu; Macromol. Chem. Phys. 2020, 221,
S. Behtaj; F. Karamali; E. Masaeli; Y.G. Anissimov; M. Rybachuk; Biochem. Eng. J. 2021, 166, 107846.
E. Sharifisamani; F. Mousazadegan; R. Bagherzadeh; M. Latifi; Polym. Eng. Sci. 2020, 60, 1520–1529.
T. Batakliev; V. Georgiev; C. Kalupgian; P.A.R. Muñoz; H. Ribeiro; G.J.M. Fechine; R.J.E. Andrade; E. Ivanov; R. Kotsilkova; Appl. Compos. Mater. 2021, 28, 1175–1192.
M. Jafari; N. Jalalifar; B. Kaffashi; J. Appl. Polym. Sci. 2021, 138, 49924.
S. Wang; B. Liu; Y. Qin; H. Guo; Membranes (Basel). 2021, 11, 640.
A. Buzmakov; A. Dunaev; Y. Krivonosov; D. Zolotov; I. Dyachkova; L. Krotova; V. Volkov; A. Bodey; V. Asadchikov; V. Popov; Polymers (Basel). 2021, 13, 1021.
A. Kumar; L. Collini; A. Daurel; J.-Y. Jeng; Addit. Manuf. 2020, 33, 101168.
Q. Wang; C. Ji; J. Sun; Q. Zhu; J. Liu; Molecules 2020, 25, 3306.
M. Özcan; D. Hotza; M.C. Fredel; A. Cruz; C.A.M. Volpato; J. Compos. Sci. 2021, 5, 78.
Á. Kmetty; K. Litauszki; Polymers (Basel). 2020, 12, 463.
A. Lupan; A.-Z.Z. Kun; F. Carrascoza; R. Silaghi-Dumitrescu; J. Mol. Model. 2013, 19, 193–203.
Y.M. Xie; H.F. Schaefer; R. Silaghi-Dumitrescu; B. Peng; Q.S. Li; J.A. Stearns; T.R. Rizzo; Chem. Eur. J. 2012, 18, 12941–12944.
F. Carrascoza; S. Zaric; R. Silaghi-Dumitrescu; J. Mol. Graph. Model. 2014, 50, 125–133.
R. Silaghi-Dumitrescu; Stud. Univ. Babes-Bolyai Chem. 2010, 31–36.
I. Irsai; C. Majdik; A. Lupan; R. Silaghi-Dumitrescu; J. Math. Chem. 2012, 50, 703–733.
I. Irsai; A.M.V. Brânzanic; R. Silaghi-Dumitrescu; Stud. Univ. Babeș-Bolyai Chem. 2021, 66, 107–121.
I. Irsai; A. Lupan; C. Majdik; R. Silaghi-Dumitrescu; Stud. Univ. Babes-Bolyai Chem. 2017, 62, 495–513.
M.J. Frisch; G.W. Trucks; H.B. Schlegel; G.E. Scuseria; M.A. Robb; J.R. Cheeseman; J. Montgomery J.A.; T. Vreven; K.N. Kudin; J.C. Burant; J.M. Millam; S.S. Iyengar; J. Tomasi; V. Barone; B. Mennucci; M. Cossi; G. Scalmani; N. Rega; G.A. Petersson; et al.; in (Gaussian, Inc., 2009).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.