EVALUATION OF PHOTOPOLYMERIZABLE HEMA-BASED HYDROGELS FOR RELEASE OF ANTI-DIABETIC DRUG METFORMIN HCL

Authors

DOI:

https://doi.org/10.24193/subbchem.2023.2.08

Keywords:

Photopolymerization, photoinitiators, hydrogels, release system, HEMA, metformin HCl

Abstract

This study targets to prepare a metformin hydrochloride delivery system through the preparation and evaluation of 2-hydroxyl ethyl methacrylate (HEMA) based hydrogels. The current study explores the effect of photoinitiator (Irgacure 184, Irgacure 651), PEG-DA derivatives, 4-Acryloyl morpholine (4-AcM), and gelatine obtained by UV photopolymerization of HEMA hydrogels. Photopolymerization technique which was under UV irradiation was implemented at 365 nm and 300 s. Two different photoinitiators [2,2-Dimethoxy-2-phenyl-acetophenone (Irgacure 651)], [1-Hydroxycyclohexyl phenyl ketone (Irgacure 184)] were used to obtain the impact of photoinitiators on the metformin HCl release behavior of samples. In addition, PEG-DA Mn=258, PEG-DA Mn=700, 4-AcM, and gelatine were used to improve HEMA hydrogels. The prepared hydrogels have been characterized using Fourier transform infrared spectroscopy (FT-IR) and a digital microscope. The behaviors of hydrogels were specified by exploring swelling and release profiles in different medias. In-vitro metformin HCl release analyses have been done at pH 1.2, 6.8, and 7.4. UV-Vis spectrophotometer at 244 nm for releasing studies was used. The release results of hydrogels synthesized with Irgacure 651 demonstrated the majority quantity of the drug. Furthermore, the release amounts were higher in pH 1.2 than at previously mentioned pH medias.

References

H. Sun; P. Saeedi; S. Karuranga; M. Pinkepank; K. Ogurtsova; B.B. Duncan; C. Stein; A. Basit; J.C.N. Chan; J.C. Mbanya; M.E. Pavkov; A. Ramachandaran; S.H. Wild; S. James; W.H. Herman; P. Zhang P; C. Bommer; S. Kuo; E.J. Boyko; D.J. Magliano; Diabetes Res. Clin. Pract.,2022, 183, 109119.

NCD-RisC; NCD Risk Factor Collaboration, The Lancet, 2016, 387, 1513‑1530.

Organisation for Economic Co-operation and Development (OECD); Realising the Potential of Primary Health Care, OECD Health Policy Studies, OECD Publishing: Paris, 2020. https://www.oecd.org/health/realising-the-potential-of-primary-health-care-a92adee4-en.htm. Accessed Dec 12, 2022.

OECD/European Union; Health at a Glance: Europe 2020: State of Health in the EU Cycle, OECD Publishing: Paris, 2020. https://www.oecd-ilibrary.org/social-issues-migration-health/health-at-a-glance-europe-2020_82129230-en. Accessed Dec 12, 2022.

International Diabetes Federation (IDF); IDF Diabetes Atlas, 10th ed.; Brussels, Belgium, 2021. https://www.diabetesatlas.org. Accessed Dec 12, 2022.

G. Roth; D. Abate; K.H. Abate; S. Abay; The Lancet., 2018, 392, 1736-1788.

OECD; Health at a Glance 2021: OECD Indicators, OECD Publishing: Paris, 2021. https://www.oecd.org/health/health-at-a-glance/. Accessed Dec 12, 2022.

R.J. Dowling; P.J. Goodwin; V. Stambolic; BMC Medicine, 2011, 6, 9-33.

B. Viollet; B. Guigas; N. Sanz Garcia; J. Leclerc; M. Foretz; F. Andreelli; Clin. Sci. (Lond)., 2012, 122, 253-70.

M. Cetin; S. Sahin; Drug Deliv., 2016, 23, 2796-2805.

A.F. Cicero; E. Tartagni; S. Ertek; AMS., 2012, 8, 907-917.

W.Y. Jeong; M. Kwon; H.E. Choi; K. S. Kim; Biomater Res., 2021, 25, 24-39.

B. Begines; T. Ortiz; M. Pérez-Aranda; G. Martínez; M. Manuel; F. Arias; A. Alcudia; Nanomater., 2020, 10, 1403-1441.

S. Senol; E. Akyol; J. Mater. Sci., 2018, 53, 14953-14963.

S. Senol; E. Akyol; JOTCSA., 2019, 6, 1-14.

S. Senol; E. Akyol; Mater. Sci-Poland, 2019, 38, 443-449.

S. Cascone; G. Lamberti; Int. J. Pharm., 2020, 573, 118803.

E. M. Ahmed; J. Adv. Res., 2015, 6, 105-121.

D. Staneva; I. Grabchev; P. Bosch; Inter. J. Poly. Mater. Polym. Biomater., 2015, 64, 838–847.

Z. Peng; F. Chen; Inter. J. Poly. Mater. Polym. Biomater., 2015, 59, 450–461.

W. Zhang; Y. Jiang; H. Wang; Q. Li; K. Tang; J. Biomater. App., 2022, 37, 12- 22.

J. Kopeček; Biomater., 2007, 28, 5185-5192.

I. Chiulan; E.B. Heggset; Ş.I. Voicu; G. Chinga-Carrasco; Biomacromolecules, 2021, 22, 1795-1814.

Camposeo. A; A. Arkadii; L. Romano. L; F. D’Elia; F. Fabbri; E. Zussman; D. Pisignano; Addit. Manuf., 2022, 58, 103020-103051.

C. Felipe-Mendes; L. Ruiz-Rubio; J.L. Vilas-Vilela; Emergent Mater., 2020, 3, 453–468.

A. Bagheri; J. Jin; ACS Appl. Polym. Mater., 2019, 1, 593−611.

Y. Zhang; L. Josien; J.P. Salomon; A. Simon-Masseron; J. Lalevée; ACS Appl. Polym. Mater., 2021, 3, 400–409.

D. Myung; P.E. Duhamel; J.R. Cochran; J. Noolandi; C. Ta; C. Frank; Biotechnol. Prog., 2008, 24, 735–741.

L. Wang; C. Lu; H. Liu; S. Lin; K. Nan; H. Chen; L.A. Li; RSC Adv., 2016, 6, 1194–1202.

M. Todica; R. Stefan; C.V. Pop; I. Papuc; O. Stan; L.E. Olar; Studia UBB Chemia., 2015, 1, 7–17.

T.A. Arica; M. Guzelgulen; A.A. Yildiz; M.M. Demir; Mater. Sci. Eng. C, 2021, 120, 111720-111731.

S.J. Bryant; K.S.J. Anseth; J. Biomed. Mater. Res., 2002, 59, 63-72.

M. Todica; C.V. Pop; R. Stefan; M. Nagy; S. Garabagiu; Studia UBB Chemia., 2015, 1, 19–28.

D. L. Hern; J.A.J. Hubbell; Biomed. Mater. Res., 1998, 39, 266-276.

S. Nemir; H.N. Hayenga; J. L. West; Biotechnol. Bioeng., 2010, 105, 636-644.

X. Tong; F. Yang; Biomater., 2014, 35, 1807-1815.

K. Arcaute; B. Mann; R. Wicker; Acta Biomater., 2010, 6, 1047-1054.

T. Bal; B. Kepsutlu; S. Kizilel; J. Biomed. Mater. Res. A., 2014, 102, 487-495.

G.M. Cruise; O.D. Hegre; D. S. Scharp; J. A. Hubbell; Biotechnol. Bioeng., 1998, 57, 655-665.

J.L. Hill-West; S.M. Chowdhury; M.J. Slepian; J.A. Hubbell; Proc. Natl. Acad. Sci., 1994, 91, 5967-5971.

M.B. Browning; S.N. Cereceres; P.T. Luong; E. M. Cosgriff-Hernandez; J. Biomed. Mater. Res. A., 2014, 102, 4244-4251.

G.M. Cruise; O.D. Hegre; F.V. Lamberti; S.R. Hager; R. Hill; D.W. Scharp; J.A. Hubbell; Cell Transplantation, 1999, 8, 293-306.

P. Occhetta; R. Visone; L. Russo; L. Cipolla; M. Moretti; M. Rasponi; J. Biomed. Mater. Res. Part A, 2015, 103, 2109-2117.

J. Gopinathan; I. Noh, Biomater. Res., 2018, 22,1-15.

H. Gudapati; M. Dey; I. Ozbolat; Biomater., 2016, 102, 20-42.

W. Schuurman; P.A. Levett; M.W. Pot; P. René Van Weeren; W. J. A. Dhert; D. W. Hutmacher; F. P. W. Melchels; T.J. Klein; J. Malda; Macromol Biosci., 2013, 13, 551- 561.

O. Schiavon; P. Caliceti; P. Ferruti; F.M. Veronese; Farmaco, 2000, 55, 264-269.

J.Z. Yi; S.H. Goh; Polym., 2002, 43, 4515-4522.

B.L. Rivas; A. Maureira; K.E. Geckeler; J. Appl. Polym. Sci., 2006, 101, 180-185.

H. Efe; M. Bicen; M.V. Kahraman; N. Kayaman-Apohan; J. Braz. Chem. Soc., 2013, 24, 814-820.

B. Mokhtare; M. Cetin; R. Sevinc-Ozakar; H. Bayrakceken; Hujpharm., 2015, 35, 74-86.

M.F. Akhtar; N.M. Ranjha; M. Hanif; DARU J. Pharm. Sci., 2015, 23, 41-51.

P.J. Flory; Principles of Polymer Chemistry, 16th ed., Cornell University Press, Ithaca, New York, 1995; pp. 255-391.

C.C. Lin; S.M. Sawichi; A.T. Metters; Biomacromolecules, 2008, 9, 75-83.

Downloads

Published

2023-06-30

How to Cite

SENOL, S. . (2023). EVALUATION OF PHOTOPOLYMERIZABLE HEMA-BASED HYDROGELS FOR RELEASE OF ANTI-DIABETIC DRUG METFORMIN HCL. Studia Universitatis Babeș-Bolyai Chemia, 68(2), 115–130. https://doi.org/10.24193/subbchem.2023.2.08

Issue

Section

Articles

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.