RADIOCARBON DATING OF THE VERY LARGE EGG BAOBAB FROM THE ANDOMBIRY FOREST, MADAGASCAR
DOI:
https://doi.org/10.24193/subbchem.2023.3.09Keywords:
AMS radiocarbon dating, Adansonia grandidieri, tropical trees, multiple stems, false cavityAbstract
The article discloses the AMS (accelerator mass spectrometry) radiocarbon dating results of the Egg baobab, a superlative Grandidier baobab (Adansonia grandidieri) from the Andomiry Forest, Atsimo-Andrefana region, Madagascar. The investigation of the baobab shows that it consists of 5 perfectly fused stems and exhibits a closed ring-shaped structure with a very large false cavity inside. The calculated overall wood volume of the Egg baobab is 450 m3. Two wood samples were collected from the exterior of the stems, out of which nine tiny segments were extracted and dated by radiocarbon. The oldest sample segment had a radiocarbon date of 921 ± 24 BP, which corresponds to a calibrated age of 840 ± 25 years. According to this value the Egg baobab is 875 ± 75 years old.
References
D.A. Baum, Annals of the Missouri Botanical Garden, 1995, 82, 440-471.
G.E. Wickens, P. Lowe, “The Baobabs: Pachycauls of Africa, Madagascar and Australia”, Springer, Dordrecht, 2008, pp. 232-234, 256-257, 295-296.
J.D. Pettigrew, L.K. Bell, A. Bhagwandin, E. Grinan, N. Jillani, J. Meyer, E. Wabuyele, C.E. Vickers, Taxon, 2013, 61,1240-1250.
A. Petignat, L. Jasper, “Baobabs of the world: The upside down trees of Madagascar, Africa and Australia”, Struik Nature, Cape Town, 2015, pp. 16-86.
G.V. Cron, N. Karimi, K.L. Glennon, C.A. Udeh, E.T.F. Witkowski, S.M. Venter, A.E. Assobadjo, D.H. Mayne, D.A. Baum, Taxon, 2016, 65, 1037-1049.
A. Patrut, K.F. von Reden, D.A. Lowy, A.H. Alberts, J.W. Pohlman, R. Wittmann, D. Gerlach, L. Xu, C.S. Mitchell, Tree Physiology, 2007, 27, 1569-1574.
A. Patrut, D.H. Mayne, K.F. von Reden, D.A. Lowy, R. Van Pelt, A.P. McNichol, M.L. Roberts, D. Margineanu, Radiocarbon, 2010, 52(2-3), 717-726.
A. Patrut, K.F. von Reden, R. Van Pelt, D.H. Mayne, D.A. Lowy, D. Margineanu, Annals of Forest Science, 2011, 68, 93-103.
A. Patrut, S. Woodborne, R.T. Patrut, L. Rakosy, D.A. Lowy, G. Hall, K.F. von Reden, Nature Plants, 2018, 4(7), 423-426.
A. Patrut, K.F. von Reden, D.H. Mayne, D.A. Lowy, R.T. Patrut, Nucl. Instrum. Methods Phys. Res. Sect. B, 2013, 294, 622-626.
A. Patrut, S. Woodborne, K.F. von Reden, G. Hall, M. Hofmeyr, D.A. Lowy, R.T. Patrut, PLOS One, 2015, 10(1), e0117193.
A. Patrut, L. Rakosy, R.T. Patrut, I.A. Ratiu, E. Forizs, D.A. Lowy, D. Margineanu, K.F. von Reden, Studia UBB Chemia, 2016, LXI, 4, 7-20.
A. Patrut, R.T. Patrut, L. Rakosy, D.A. Lowy, D. Margineanu, K.F. von Reden, Studia UBB Chemia, 2019, LXIV, 2 (II), 411-419.
A. Patrut, S. Woodborne, K. F. von Reden, G. Hall, R.T. Patrut, L. Rakosy, P. Danthu, J-M. Leong Pock-Tsy, D.A. Lowy, D. Margineanu, Radiocarbon, 2017, 59(2), 435-448.
A. Patrut, S. Woodborne, R.T. Patrut, G. Hall, L. Rakosy, C. Winterbach, K.F. von Reden, Forests, 2019, 10, 983-994.
A. Patrut, R.T. Patrut, M.J. Slater, L. Rakosy, D.A. Lowy, K.F. von Reden, Studia UBB Chemia, 2020, LXV, 3, 149-156.
A. Patrut, A. Garg, S. Woodborne, R.T. Patrut, L. Rakosy, I.A. Ratiu, D.A. Lowy, PLOS One, 2020, 15(1), e0227352.
A. Patrut, R.T. Patrut, L. Rakosy, I.A. Ratiu, D.A. Lowy, K.F. von Reden, Dendrochronologia 2021, 70, 125898.
A. Patrut, R.T. Patrut, W. Oliver, I.A. Ratiu, D.A. Lowy, G. Shiimbi, L. Rakosy, D. Rakosy, S. Woodborne; K.F. von Reden, Forests, 2022, 13, 1899.
G. Vieilledent, C. Cornu, A. Cuni Sanchez, J-M. Leong Pock-Tsy, P. Danthu, Biological Conservation, 2013, 166, 11-22.
H. Ravaomanalina, J. Razafimanahaka, “2016. Adansonia grandidieri.” The IUCN Red List of Threatened Species 2016: e.T30388A64007143.
A. Patrut, K.F. von Reden, P. Danthu, J-M. Leong Pock-Tsy, R.T. Patrut, D.A. Lowy, PLOS One, 2015, 10(3), e0121170.
R.T. Patrut, A. Patrut, J-M Leong Pock-Tsy, S. Woodborne, L. Rakosy, P. Danthu, I.A. Ratiu, J. Bodis, K.F. von Reden, Studia UBB Chemia, 2019, LXIV, 4, 131-39.
A. Patrut, R.T. Patrut, J-M. Leong Pock-Tsy, S. Woodborne, L. Rakosy, I.A. Ratiu, J. Bodis, P. Danthu, Studia UBB Chemia, 2020, LXV, 4, 151-158.
A. Patrut, R.T. Patrut, J-M. Leong Pock-Tsy, P. Danthu, S. Woodborne,
L. Rakosy, I.A. Ratiu, Forests, 2021, 12, 1258.
A. Patrut, K.F. von Reden, P. Danthu, J-M. Leong Pock-Tsy, R.T. Patrut, D.A. Lowy, PLoS ONE, 2015, 10(3), e0121170.
A. Patrut, R.T. Patrut, P. Danthu, J-M. Leong Pock-Tsy, L. Rakosy, D.A. Lowy, K.F. von Reden, PLOS One, 2016, 11(1), e146977.
N.J. Loader, I. Robertson, A.C. Barker, V.R. Switsur, J.S. Waterhouse, Chem. Geol.,1997, 136(3), 313–317.
Z. Sofer, Anal. Chem., 1980, 52(8), 1389-1391.
J.S. Vogel, J.R. Southon, D.E. Nelson, T.A. Brown, Nucl. Instrum. Methods Phys. Res. Sect. B, 1984, 5, 289-293.
V.L. Mbele, S.M. Mullins, S.R. Winkler, S. Woodborne, Phys. Procedia, 2017, 90, 10-16.
C. Bronk Ramsey, Radiocarbon, 2009, 51, 337-360.
A.G. Hogg, T.J. Heaton, Q. Hua, J.G. Palmer, C.S.M. Turney, J. Southon, A. Bayliss, P.G. Blackwell, G. Boswijk, C.B. Ramsey, C. Pearson, F. Petchey, P.J. Reimer, R.W. Reimer, L. Wacher, Radiocarbon, 2020, 62(4), 759-778.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.