COMPARISON OF MEMBRANE-BASED PRE-AND POST-COMBUSTION CO2 CAPTURE OPTIONS APPLIED IN ENERGY-INTENSIVE INDUSTRIAL APPLICATIONS

Authors

  • Călin-Cristian CORMOȘ Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania. Email: cormos@ubbcluj.ro. https://orcid.org/0000-0003-1215-1167
  • Ana-Maria CORMOS Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania. Email: ana.cormos@ubbcluj.ro. https://orcid.org/0000-0003-0832-0722
  • Letitia PETRESCU Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania. Email: letitiapetrescu@chem.ubbcluj.ro. https://orcid.org/0000-0002-0763-0561
  • Constantin SAVAD National Institute of Marine Geology and Geoecology (GeoEcoMar), Bucharest, Romania. Corresponding author: cormos@ubbcluj.ro.
  • Nela SLAVU Faculty of Power Engineering, University Politehnica of Bucharest, Romania. Email: slavunela@yahoo.com. https://orcid.org/0000-0003-2769-2556
  • Mihaela Diana LAZĂR National Institute for Research and Development of Isotopic and Molecular Technologies (INCDTIM), Cluj-Napoca, Romania. Email: diana.lazar@itim-cj.ro. https://orcid.org/0000-0002-1679-1324
  • Alexandra DUDU National Institute of Marine Geology and Geoecology (GeoEcoMar), Bucharest, Romania. Email: alexandra.dudu@geoecomar.ro. https://orcid.org/0000-0001-8246-3225
  • Flavia-Maria ILEA Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania. Corresponding author: cormos@ubbcluj.ro.
  • Cristian-Florian DINCĂ Faculty of Power Engineering, University Politehnica of Bucharest, Romania. Email: cristian.dinca@upb.ro. https://orcid.org/0000-0002-4678-2891
  • Marius SANDRU Sintef Industry, Trondheim, Norway. Email: marius.sandru@sintef.no. https://orcid.org/0000-0003-2120-5032
  • Ionela DUMBRAVĂ Faculty of Chemistry and Chemical Engineering, Babeş-Bolyai University, Cluj-Napoca, Romania. Email: ionela.dumbrava@yahoo.com. https://orcid.org/0000-0002-5703-0548

DOI:

https://doi.org/10.24193/subbchem.2023.3.04

Keywords:

Energy-intensive industrial applications; Pre- and post-combustion CO2 capture; Membrane; Ancillary energy consumptions; Technical performance indexes

Abstract

Deployment of decarbonization technologies in energy-intensive industrial applications (e.g., heat and power, metallurgy, cement, chemical sectors etc.) is of great importance for reducing CO2 emission and achieving global climate neutrality. Membrane CO2 removal systems gained relevant attention as possible energy and cost-efficient CO2 capture technology. This paper is evaluating membrane-based pre- and post-combustion CO2 capture to be applied in various industrial applications with high fossil CO2 emissions. The evaluation was geared mainly towards quantification of ancillary energy consumptions of membrane systems as well as the specification of captured CO2 in respect to its potential utilization and storage applications. As the assessment show, the membrane-based systems are promising CO2 capture technology for both pre- and post-combustion capture configurations.

References

Y. Wu; Q. Zhu; B. Zhu; Energy Policy, 2018, 116, 30-38

D. V. Quang; D. Milani; M. Abu Zahra; Int. J. Greenh. Gas Control, 2023, 124, 103862

European Commission, The European Green Deal, COM(2019) 640 final, Brussels, Belgium, 2019

J. A. Garcia; M. Villen-Guzman; J. M. Rodriguez-Maroto; J. M. Paz-Garcia; J. Environ. Chem. Eng., 2022, 10, 108470

M. Ali; N. K. Jha; N. Pal; A. Keshavarz; H. Hoteit; M. Sarmadivaleh; Earth-Sci. Rev., 2022, 225, 103895

K. Zhi; Z. Li; B. Wang; J. J. Klemeš; L. Guo; Process Saf. Environ. Prot., 2023, 172, 681-699

C. da Silveira Cachola; M. Ciotta; A. Azevedo dos Santos; D. Peyerl; Carbon Capture Sci. Technol., 2023, 7, 100102

E. Benhelal; E. Shamsaei; M. I. Rashid; J. Environ. Sci., 2021, 104, 84-101

P. Luis; T. van Gerven; B. van der Bruggen; Prog. Energ. Combust., 2021, 38, 419-448

E. de Visser; C. Hendriks; M. Barrio, M. J. Mølnvik; G. Koeijer; S. Liljemark

Y. L. Gallo; Int. J. Greenh. Gas Control, 2008, 2, 478-84

Chemstations, ChemCAD - Chemical Process Simulation, http://www.chemstations.net, 2023

C. C. Cormos; C. Dinca; Energy, 2021, 220, 119734

International Energy Agency - Greenhouse Gas R&D Programme (IEAGHG), CO2 capture in the cement industry, Report 2008/3, Cheltenham, UK, 2008

H. Wu; Q. Li; M. Sheng; Z. Wang; S. Zhao; J. Wang; S. Mao; D. Wang; B. Guo; N. Ye; G. Kang; M. Li; Y. Cao; J. Membr. Sci., 2021, 624, 119137

A. M. Cormos; S. Dragan; C. C. Cormos; Appl. Therm. Eng., 2022, 205, 118078

L. Giordano; J. Gubis; G. Bierman; F. Kapteijn; J. Membr. Sci., 2019, 575, 229-541

C. C. Cormos; Fuel, 2022, 320, 123907

International Energy Agency - Greenhouse Gas R&D Programme (IEAGHG), Potential for improvement in gasification combined cycle power generation with CO2 capture, Report PH4/19, Cheltenham, UK, 2003

G. Manzolini; A. Giuffrida; P. D. Cobden; H. A. J. van Dijk; F. Ruggeri; F. Consonni; Int. J. Greenh. Gas Control, 2020, 94, 102935

A. M. Cormos; C. C. Cormos; Appl. Therm. Eng., 2017, 127, 106-115

International Energy Agency - Greenhouse Gas R&D Programme (IEAGHG), Deployment of CCS in the cement industry, Report 2013/19, Cheltenham, UK, 2008

U.S. Department of Energy - National Energy Technology Laboratory (NETL), Cost and performance baseline for fossil energy plants. Volume 1a: Bituminous coal (PC) and natural gas to electricity, Report DOE/NETL-2015/1723, USA, 2015

C. Higman; M. van der Burgt; Gasification, 2nd ed.; Oxford: Elsevier Science, Gulf Professional Publishing, 2008

C. C. Cormos; Energy, 2012, 42, 434-445

M. D. Lazar; M. Mihet; M. Dan; Hydrogen to Methane-An Important Step in the Power-to-Gas Concept. In: Comprehensive Renewable Energy, M. Letcher Trevor Eds.; 2nd edition, 2022, vol. 4, pp. 553–565. Oxford: Elsevier. http://dx.doi.org/10.1016/B978-0-12-819727-1.00032-7

G. Torres-Sempere; L. Pastor-Perez; J. A. Odriozola; J. Yu; F. J. Duran-Olivencia; L. F. Bobadilla; T. R. Reina, Curr. Opin. Green Sustain. Chem. 2022, 36, 100647

A. S. Farooqi; M. Yusuf; N. A. Mohd Zabidi; R. Saidur; K. Sanaullah; A. S. Farooqi; A. Khan; B. Abdullah, Int. J. Hydrog. Energy, 2021, 46, 31024-31040

M. Dan, M. Mihet, G. Borodi, M. D. Lazar, Catal. Today, 2021, 366, 87-96

M. Dan, M. Mihet, L. Barbu-Tudoran, M. D. Lazar, Microporous Mesoporous Mater., 2022, 341, 112082

E. Smith; J. Morris; H. Kheshgi; G. Teletzke; H. Herzog; S. Paltsev; Int. J. Greenh. Gas Control, 2021, 109, 103367

S. Roussanaly; G. Bureau-Cauchois; J. Husebye; Int. J. Greenh. Gas Control, 2013, 12, 341-350

C. C. Cormos, Energy, 2023, 170, 126926

Global CCS Institute, Getica CCS project, Public report, https://www.globalccsinstitute.com/archive/hub/publications/25516/getica-251111v2.pdf, 2011

K. Storrs; I. Lyhne; R. Drustrup; Int. J. Greenh. Gas Control, 2023, 125, 103878.

Downloads

Published

2023-09-25

How to Cite

CORMOȘ, C.-C. ., CORMOS, A.-M. ., PETRESCU, L. ., SAVAD, C. ., SLAVU, N. ., LAZĂR, M. D. ., … DUMBRAVĂ, I. . (2023). COMPARISON OF MEMBRANE-BASED PRE-AND POST-COMBUSTION CO2 CAPTURE OPTIONS APPLIED IN ENERGY-INTENSIVE INDUSTRIAL APPLICATIONS. Studia Universitatis Babeș-Bolyai Chemia, 68(3), 51–70. https://doi.org/10.24193/subbchem.2023.3.04

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 22 23 24 25 26 27 28 29 30 31 > >> 

You may also start an advanced similarity search for this article.