Hydrothermal Carbonization of Deciduous Woody Biomass: Path to Energy Intensification and Fine Chemicals

Authors

DOI:

https://doi.org/10.24193/subbchem.2024.1.02

Keywords:

Hydrothermal carbonization (HTC), Biomass, Bio-oil, Biochar, Fine chemicals

Abstract

Four deciduous woody feedstocks (Casuarina equisetifolia L., Eucalyptus globulus, Wrightia tinctoria, and Neolamarika cadamba) were subjected to the Hydrothermal Carbonization (HTC) process inside a 50 mL stainless steel hydrothermal reactor at varying temperatures (180°C, 215°C, and 250°C), while keeping water-to-feedstock ratio (6:1 v/w%) and residence time (1.5 h) constant. The mass yield and energy yield of the resulting biomass were calculated as parameters for energy intensification. Characterization of the biomass, biochar, and bio-oil was conducted using elemental analysis, SEM, and GC–MS. Interestingly, the mass yield of biochar decreased with increasing temperature, but it significantly improved the energy densification ratio, with a minimum of 1.06 observed for Neolamarika cadamba biomass at 180°C and a maximum of 1.23 observed for Eucalyptus globulus biomass at 250°C. Moreover, detailed analysis of the bio-oil obtained at 250°C using GC-MS revealed the presence of a diverse range of fine chemicals, including benzyl, carboxylic acid, ester, methyl, phenol, pyrrole, nitro, and aliphatic hydrocarbons. These findings suggest that the HTC process can be optimized to tailor the production of specific value-added chemicals from lignocellulosic woody biomass.

References

J.J. Chew, V. Doshi, Renew. Sustain. Energy Rev., 2011, 15, 4212–4222.

B. Dou, H. Zhang, Y. Song, L. Zhao, B. Jiang, M. He, C. Ruan, H. Chen, Y. Xu, Sustain. Energy Fuels, 2019, 3, 314–342.

H. Chen, X. Fu, Renew. Sustain. Energy Rev., 2016, 57, 468–478.

B. Ercan, K. Alper, S. Ucar, S. Karagoz, J. Energy Inst., 2023, 109, 101298.

P. Basu, Biomass Gasification, Pyrolysis Torrefaction Pract. Des. Theory 2013, 1–530.

S.S. Jamari, J.R. Howse, Biomass Bioenerg, 2012, 47, 82–90.

H.-G. Ramke, D. Blöhse, H.-J. Lehmann, J. Fettig, S.T. Höxter, Sardinia 2009 Twelfth Int. Waste Manag. Landfill Symp. 2009.

A. Funke, F. Ziegler, Biofuels, Bioprod. Biorefining, 2010, 4, 160–177.

S.E. Elaigwu, V. Rocher, G. Kyriakou, G.M. Greenway, J. Ind. Eng. Chem., 2014, 20, 3467–3473.

P. Regmi, J.L. Garcia Moscoso, S. Kumar, X. Cao, J. Mao, G. Schafran, J. Environ. Manage., 2012, 109, 61–69.

M.A. Islam, A. Benhouria, M. Asif, B.H. Hameed, J. Taiwan Inst. Chem. Eng., 2015, 52, 57–64.

H.H. Hammud, A. Shmait, N. Hourani, RSC Adv., 2015, 5, 7909–7920.

S.M. Heilmann, J.S. Molde, J.G. Timler, B.M. Wood, A.L. Mikula, G. V. Vozhdayev, E.C. Colosky, K.A. Spokas, K.J. Valentas, Environ. Sci. Technol., 2014, 48, 10323–10329.

N.D. Berge, L. Li, J.R.V. Flora, K.S. Ro, Waste Manag., 2015, 43, 203–217.

Z. Gao, Y. Zhang, N. Song, X. Li, Mater. Res. Lett., 2017, 5, 69–88.

S. van L. and J. Koppejan, ed., The Handbook of Biomass Combustion and Co-Firing, Routledge, 2012, London.

M.B. Sticklen, Nat. Rev. Genet., 2008, 9, 433–443.

X. Lu, P.J. Pellechia, J.R.V. Flora, N.D. Berge, Bioresour. Technol., 2013, 138, 180–190.

S. Kang, X. Li, J. Fan, J. Chang, Ind. Eng. Chem. Res., 2012, 51, 9023–9031.

D. Kim, K. Lee, K.Y. Park, J. Ind. Eng. Chem., 2016, 42, 95–100.

S. Kamal, M.S. Hossain, I.H. Sadab, K.B. Kabir, K. Kirtania, Fuel Commun. 2023, 100090.

M. Volpe, A. Messineo, M. Mäkelä, M.R. Barr, R. Volpe, C. Corrado, L. Fiori, Fuel Process. Technol., 2020, 206, 106456.

TAPPI (Technical Association of Pulp and Paper Industry), T 204 C. 2007.

T. Ona, T. Sonoda, M. Shibata, K. Fukazawa, Tappi J., 1995, 78,121–126.

P. Basu, Biomass Gasification, Pyrolysis and Torrefaction 2018, 479–495.

S.A. Channiwala, P.P. Parikh, Fuel, 2002, 1051–1063.

H.S. Kambo, A. Dutta, Energy Convers. Manag., 2015, 105, 746–755.

E. Sermyagina, J. Saari, J. Kaikko, E. Vakkilainen, J. Anal. Appl. Pyrolysis, 2015, 113, 551–556.

S. V. Vassilev, C.G. Vassileva, V.S. Vassilev, Fuel, 2015, 158, 330–350.

S.E.C. Whitney, M.G.E. Gothard, J.T. Mitchell, M.J. Gidley, Plant Physiol., 1999,121, 657–663.

S. Bilgen, K. Kaygusuz, A. Sari, Energy Sources, 2004, 26, 1083–1094.

G. Ischia, L. Fiori, Waste Biomass Valori., 2021, 12, 2797–2824.

L. Liu, Biomass-Derived Humins Form. Chem. Struct., Springer, 2023, pp. 85–99.

M. do S.B. da Silva, J.G.L. de Araujo, J.C.C. V Bento, A.M. de Azevedo, C.R.O. Souto, A.S.D. dos Anjos, A.M.M. de Araújo, D.R. da Silva, F.G. Menezes, A.D. Gondim, L.N. Cavalcanti, RSC Adv., 2022, 12, 27889–27894.

K. Werner, L. Pommer, M. Broström, J. Anal. Appl. Pyrolysis, 2014, 110, 130–137.

D. Chen, K. Cen, X. Zhuang, Z. Gan, J. Zhou, Y. Zhang, H. Zhang, Combust. Flame, 2022, 242, 112142.

C. Zhou, X. Xia, C. Lin, D. Tong, J. Beltramini, Chem. Soc. Rev., 2011, 40, 5588–617.

R. Wang, H. Ben, Front. Energy Res., 2020, 8, 1–12.

Downloads

Published

2024-03-30

How to Cite

SENGOTTIAN, M., VENKATACHALAM, C. D., RAVICHANDRAN, S. R., & SEKAR, S. (2024). Hydrothermal Carbonization of Deciduous Woody Biomass: Path to Energy Intensification and Fine Chemicals. Studia Universitatis Babeș-Bolyai Chemia, 69(1), 17–34. https://doi.org/10.24193/subbchem.2024.1.02

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.