Catalytic and Solvent Hydrothermal Liquefaction of Microalgae: A Strategy for Recovering Fine Chemicals
DOI:
https://doi.org/10.24193/subbchem.2024.3.07Keywords:
Biocrude, Catalysts, Co-Solvents, Hydrothermal Liquefaction, MicroalgaeAbstract
The study investigates the influence of various catalysts (Ni/TiO2, Co/TiO2, and Zeolite) on the hydrothermal liquefaction of microalgae and explores the effect of co-solvents (acetone, methanol, and toluene) on biocrude yield from different microalgae three species namely Nannochloropsis oculata, Chlorella vulgaris, and Spirulina maxima. Catalyst characterization using FE-SEM, XRD, and BET analysis revealed distinct properties. Under Co-TiO2, Nannochloropsis oculata and Chlorella vulgaris yield 56.21% and 57.6% biocrude at 5% loading; Spirulina maxima yields 45.3% at 2.5% loading. With Ni-TiO2, Nannochloropsis oculata yields 52.4% at 2.5% loading; Chlorella vulgaris yields 44.7% at 5%; Spirulina maxima yields 44% at 2.5% loading. Zeolite yields: Spirulina maxima and Chlorella vulgaris yield 53.8% and 52.1% at 2.5%; Nannochloropsis oculata yields 48.3% at 7.5% loading. Co-solvent addition significantly boosts biocrude yield; methanol and toluene yield 53.7% and 49.2% for Chlorella vulgaris and Spirulina maxima, respectively, while acetone yields 57.6% for Nannochloropsis oculata. Different solvents extract diverse functional groups such as alkanes, halides, aromatics, and aldehydes which has wide industrial applications.
References
Agarwala, N. and S. Polinov J. Adv. Humanit. Soc. Sci., 2021, 2, 1-24.
De Caprariis, B., P. De Filippis, A. Petrullo, and M. Scarsella Fuel, 2017, 208, 618-625.
Hu, Y., M. Gong, S. Feng, C. Xu, and A. Bassi 2019, 101, 476-492.
López Barreiro, D., W. Prins, F. Ronsse, and W. Brilman 2013, 53, 113-127.
Ravichandran, S.R., C.D. Venkatachalam, M. Sengottian, S. Sekar, S. Kandasamy, K.P.R. Subramanian, K. Purushothaman, A.L. Chandrasekaran, and M. Narayanan Fuel, 2022, 313, 122679.
Levasseur, W., P. Perré, and V. Pozzobon Biotechnol. Adv., 2020, 41, 107545.
Sathasivam, R., R. Radhakrishnan, A. Hashem, and E.F. Abd_Allah Saudi J. Biol. Sci., 2019, 26, 709-722.
Vaz, B.d.S., J.B. Moreira, M.G.d. Morais, and J.A.V. Costa 2016, 7, 73-77.
Osman, A.I., N. Mehta, A.M. Elgarahy, A. Al-Hinai, A.a.H. Al-Muhtaseb, and D.W. Rooney Environ. Chem. Lett., 2021, 19, 4075-4118.
Zhuang, X., J. Liu, C. Wang, Q. Zhang, and L. Ma Fuel, 2022, 313, 122671.
SENGOTTIAN, M., C.D. VENKATACHALAM, S.R. RAVICHANDRAN, and S. SEKAR Studia UBB Chemia., 2024, 69,
Gollakota, A., N. Kishore, and S. Gu Renew. Sust. Energ. Rev., 2018, 81, 1378-1392.
Ong, H.C., W.-H. Chen, A. Farooq, Y.Y. Gan, K.T. Lee, and V. Ashokkumar Renew. Sust. Energ. Rev., , 2019, 113, 109266.
Hietala, D.C., C.M. Godwin, B.J. Cardinale, and P.E. Savage Appl. Energ., 2019, 235, 714-728.
Biller, P. and A. Ross Bioresource technol., 2011, 102, 215-225.
Biswas, B., A. Arun Kumar, Y. Bisht, R. Singh, J. Kumar, and T. Bhaskar 2017, 242, 344-350.
Chen, Y., Y. Wu, P. Zhang, D. Hua, M. Yang, C. Li, Z. Chen, and J. Liu Bioresource technol., 2012, 124, 190-198.
Cheng, S., C. Wilks, Z. Yuan, M. Leitch, and C.C. Xu Polym. Degrad. Stabil., 2012, 97, 839-848.
Ross, A., P. Biller, M. Kubacki, H. Li, A. Lea-Langton, and J. Jones Fuel, 2010, 89, 2234-2243.
Dong, S., Z. Liu, and X. Yang Chinese Chem. Lett., 2023, 109142.
Zhang, W. and Y. Liang J. Environ. Chem. Eng., 2022, 10, 107092.
LeClerc, H.O., G.A. Tompsett, A.D. Paulsen, A.M. McKenna, S.F. Niles, C.M. Reddy, R.K. Nelson, F. Cheng, A.R. Teixeira, and M.T. Timko Iscience, 2022, 25,
Toro, R.G., M. Diab, T. de Caro, M. Al-Shemy, A. Adel, and D. Caschera Materials, 2020, 13, 1326.
Ganesh, I., A. Gupta, P. Kumar, P. Sekhar, K. Radha, G. Padmanabham, and G. Sundararajan The Scientific World Jo., 2012, 2012, 127326.
Mitta, H., P.K. Seelam, S. Ojala, R.L. Keiski, and P. Balla Appl. Catal. A-Gen., 2018, 550, 308-319.
Saber, M., A. Golzary, M. Hosseinpour, F. Takahashi, and K. Yoshikawa Appl. Energ., 2016, 183, 566-576.
Shakya, R., J. Whelen, S. Adhikari, R. Mahadevan, and S. Neupane Algal Res., 2015, 12, 80-90.
Yang, W., X. Li, S. Liu, and L. Feng Energ. Convers. Manage., 2014, 87, 938-945.
Shuping, Z., W. Yulong, Y. Mingde, I. Kaleem, L. Chun, and J. Tong Energy, 2010, 35, 5406-5411.
Jena, U., K.C. Das, and J.R. Kastner Appl. Energ., 2012, 98, 368-375.
Wang, W., Y. Xu, X. Wang, B. Zhang, W. Tian, and J. Zhang Bioresource Technol., 2018, 250, 474-480.
López Barreiro, D., B.R. Gómez, F. Ronsse, U. Hornung, A. Kruse, and W. Prins 2016, 148, 117-127.
Ravichandran, S.R., C.D. Venkatachalam, and M. Sengottian 2023,
Huang, Y., Y. Chen, J. Xie, H. Liu, X. Yin, and C. Wu Fuel, 2016, 183, 9-19.
Xu, D., G. Lin, S. Guo, S. Wang, Y. Guo, and Z. Jing Renew. Sust. Energ. Rev., 2018, 97, 103-118.
Han, Y., S.K. Hoekman, Z. Cui, U. Jena, and P. Das 2019, 38, 101421.
Zhang, J. and Y. Zhang Energ. Fuel, 2014, 28, 5178-5183.
Cui, Z., F. Cheng, J.M. Jarvis, C.E. Brewer, and U. Jena Bioresource Technol., 2020, 310, 123454.
Han, Y., K. Hoekman, U. Jena, and P. Das 2020, 13,
Jena, U., B.E. Eboibi, and K.C. Das 2022, 3, 326-341.
Masoumi, S., P.E. Boahene, and A.K. Dalai 2021, 217, 119344.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Studia Universitatis Babeș-Bolyai Chemia
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.