Quality of Life, Risk Behavior, and Digital Engagement
DOI:
https://doi.org/10.24193/subbpsyped.2025.1.07Keywords:
Quality of Life, Risk-Taking, Apps importanceAbstract
This study examines the relationship between quality of life factors, risk-taking behaviors, and the perceived importance of mobile apps. Regression analysis revealed that quality of life factors explain 10.3% of the variance in risk-taking (R² = 0.103). Satisfaction with learning was negatively associated with risk-taking (β = −0.56, p < .01), while satisfaction with creativity (β = 0.44, p < .05) and friendships (β = 0.41, p < .05) showed positive associations. A second analysis found that quality of life factors explain 8.8% of the variance in app importance (R² = 0.088), with satisfaction with learning (β = 0.11, p = 0.022) and love (β = 0.07, p = 0.014) as significant predictors. These findings highlight how life satisfaction influences both risk-taking and digital engagement.
References
1. Atkinson, R. D., & Castro, D. (2008). Digital quality of life: Understanding the personal and social benefits of the information technology revolution. Available at SSRN 1278185.
2. Berceanu, D. C.-A., Pânișoară, G., Popovici, A.-F., & Ghiță, C. M. (2023). Quality of life and the digital service landscape: The moderating role of customer complaining effort. Behavioral Sciences, 13(5), 375. https://doi.org/10.3390/bs13050375
3. Chan, A. H. Y., & Honey, M. L. (2022). User perceptions of mobile digital apps for mental health: Acceptability and usability‐An integrative review. Journal of Psychiatric and Mental Health Nursing, 29(1), 147-168. https://doi.org/10.1111/jpm.12744
4. Chen, H.-T., & Li, X. (2017). The contribution of mobile social media to social capital and psychological well-being: Examining the role of communicative use, friending and self-disclosure. Computers in Human Behavior, 75, 958–965. https://doi.org/10.1016/j.chb.2017.06.011
5. Damant, J., Knapp, M., Freddolino, P., & Lombard, D. (2017). Effects of digital engagement on the quality of life of older people. Health & Social Care in the Community, 25(6), 1679–1703. https://doi.org/10.1111/hsc.12335
6. David, M. E., Roberts, J. A., & Christenson, B. (2018). Too much of a good thing: Investigating the association between actual smartphone use and individual well-being. International Journal of Human-Computer Interaction, 34(3), 265–275. https://doi.org/10.1080/10447318.2017.1349250
7. de Oliveira Pinheiro, B., Monezi Andrade, A. L., Lopes, F. M., Reichert, R. A., de Oliveira, W. A., da Silva, A. M. B., & De Micheli, D. (2022). Association between quality of life and risk behaviors in Brazilian adolescents: An exploratory study. Journal of Health Psychology, 27(2), 341–351. https://doi.org/10.1177/1359105320953472
8. Dey, M., Gmel, G., Studer, J., & Mohler-Kuo, M. (2014). Health-risk behaviors and quality of life among young men. Quality of Life Research, 23(3), 1009–1017. https://doi.org/10.1007/s11136-013-0524-4
9. Elkefi, S., Trapani, D., & Ryan, S. (2023). The role of digital health in supporting cancer patients’ mental health and psychological well-being for a better quality of life: A systematic literature review. International Journal of Medical Informatics, 176(105065), 105065. https://doi.org/10.1016/j.ijmedinf.2023.105065
10. Esposito, M., Ferrara, M., Panzaru, C., & De Vito, E. (2020). The relationship between life satisfaction and risk behaviors: A cross-cultural analysis of youth. Advances in Applied Sociology, 10(9), 356-368.
11. Hewett, R., Haun, V. C., Demerouti, E., Rodríguez Sánchez, A. M., Skakon, J., & De Gieter, S. (2017). Compensating need satisfaction across life boundaries: A daily diary study. Journal of Occupational and Organizational Psychology, 90(2), 270–279. https://doi.org/10.1111/joop.12171
12. Horwood, S., & Anglim, J. (2019). Problematic smartphone usage and subjective and psychological well-being. Computers in Human Behavior, 97, 44–50. https://doi.org/10.1016/j.chb.2019.02.028
13. Khodarahimi, S., & Fathi, R. (2016). Mental health, coping styles, and risk-taking behaviors in young adults. Journal of Forensic Psychology Practice, 16(4), 287-303. https://doi.org/10.1080/15228932.2016.1196101
14. Kuntsche, E., Rehm, J., & Gmel, G. (2004). Characteristics of binge drinkers in Europe. Social Science & Medicine, 59(1), 113–127. https://doi.org/10.1016/j.socscimed.2003.10.009
15. Li, Q., & Luximon, Y. (2016). Older adults and digital technology: A study of user perception and usage behavior. In Advances in Intelligent Systems and Computing (pp. 155–163). Springer International Publishing.
16. Nofsinger, J. R., Patterson, F. M., & Shank, C. A. (2018). Decision-making, financial risk aversion, and behavioral biases: The role of testosterone and stress. Economics & Human Biology, 29, 1-16. https://doi.org/10.1016/j.ehb.2018.01.003
17. Patrick, D. L., & Erickson, P. (1993). Assessing health-related quality of life for clinical decision-making. In Quality of Life Assessment: Key Issues in the 1990s (pp. 11-63). Dordrecht: Springer Netherlands.
18. Rotondi, V., Stanca, L., & Tomasuolo, M. (2017). Connecting alone: Smartphone use, quality of social interactions and well-being. Journal Of Economic Psychology, 63, 17–26. https://doi.org/10.1016/j.joep.2017.09.001
19. Ryan, R. M., & Deci, E. L. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25(1), 54–67. https://doi.org/10.1006/ceps.1999.1020
20. Topolski, T. D., Patrick, D. L., Edwards, T. C., Huebner, C. E., Connell, F. A., & Mount, K. K. (2001). Quality of Life and Health-Risk Behaviors among Adolescents. Journal of Adolescent Health, 29, 426-435. https://doi.org/10.1016/S1054-139X(01)00305-6
21. Triantafyllidis, A. K., & Tsanas, A. (2019). Applications of machine learning in real-life digital health interventions: Review of the literature. Journal of Medical Internet Research, 21(4), e12286. https://doi.org/10.2196/12286
22. Valois, R. F., Zullig, K. J., Huebner, E. S., Kammermann, S. K., & Drane, J. W. (2002). Association between life satisfaction and sexual risk-taking behaviors among adolescents. Journal of Child and Family Studies, 11(4), 427–440. https://doi.org/10.1023/a:1020931324426
23. Xu, R., Frey, R. M., Fleisch, E., & Ilic, A. (2016). Understanding the impact of personality traits on mobile app adoption–Insights from a large-scale field study. Computers in Human Behavior, 62, 244-256. https://doi.org/10.1016/j.chb.2016.04.011
24. Yin, Y., Lam, W. H., & Ieda, H. (2004). New technology and the modeling of risk-taking behavior in congested road networks. Transportation Research Part C, 12(3-4), 171-192. https://doi.org/10.1016/j.trc.2004.07.009
25. Zafar, S. Y., Alexander, S. C., Weinfurt, K. P. et al. (2009). Decision making and quality of life in the treatment of cancer: A review. Support Care Cancer, 17, 117–127. https://doi.org/10.1007/s00520-008-0505-2
26. Zych, M. M., Bond, R., Mulvenna, M., Martinez Carracedo, J., Bai, L., & Leigh, S. (2024). Quality assessment of digital health apps: Umbrella review. Journal of Medical Internet Research, 26(1), e58616. https://doi.org/10.2196/58616.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Studia Universitatis Babeș-Bolyai Psychologia-Paedagogia

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.