Brouwer–Hilbert on the Limits of Mathematical Knowledge

Authors

  • Silviu-Constantin FEDEROVICI Alexandru Ioan Cuza University of Iași, Doctoral School of Philosophy and Social-Political Sciences. Email: silviu.federovici@student.uaic.ro https://orcid.org/0009-0000-0061-8669

DOI:

https://doi.org/10.24193/subbphil.2025.sp.iss.02

Keywords:

philosophy of mathematics, Brouwer-Hilbert controversy, epistemic limits, Kantian heritage

Abstract

Brouwer famously challenged the limits of mathematical knowledge by arguing that classical formalism obscures intuitive evidence. Hilbert, by contrast, considered that intuitive insights could safely be ignored as long as formal systems remained consistent and complete. Such a disagreement created a paradigmatic tension between intuitionism and formalism in how the foundations of mathematics should be regarded. This paper evaluates Hilbert’s eventual pragmatic dominance and explores, via a shared Kantian heritage, how intuitionistic insights might coexist with formal approaches. Focusing on axioms, the analysis reveals how neglecting certain epistemic values while admitting alternative forms of evidence shapes our understanding of mathematical limits.

References

1. Bourbaki, Nicolas, Éléments d’histoire des mathématiques, Paris, Hermann, 1960.

2. Brouwer, L. E. J., “Historical Background, Principles and Methods of Intuitionism”, in South African Journal of Science, 49 / 1952, South African Association for the Advancement of Science, pp. 140–142.

3. Brouwer, L. E. J., “Intuitionism and Formalism”, in A. Heyting (ed.), Collected Works, Vol. I, Amsterdam, North-Holland, 1975, pp. 123-138.

4. Brouwer, L. E. J., “On the Foundations of Mathematics”, in A. Heyting (ed.), Collected Works, Vol. I, Amsterdam, North-Holland, 1975, pp. 11-101.

5. Brouwer, L. E. J., “The Unreliability of the Logical Principles”, in A. Heyting (ed.), Collected Works, Vol. I, Amsterdam, North-Holland, 1975, pp. 107-111.

6. Dummett, Michael, Elements of Intuitionism, Oxford, Oxford University Press, 1977.

7. Grattan-Guinness, Ivor, The Search for Mathematical Roots: 1870–1940: Logics, Set Theories, and the Foundations of Mathematics from Cantor through Russell to Gödel, Princeton, Princeton University Press, 2000.

8. Hesseling, Dennis E., Gnomes in the Fog: The Reception of Brouwer’s Intuitionism in the 1920s, Basel, Springer, 2003.

9. Heyting, Arend, Intuitionism: An Introduction, Amsterdam, North-Holland Publishing Company, 1956.

10. Hilbert, David, “From Mathematical Problems”, in W. Ewald (ed.), From Kant to Hilbert. A Source Book in the Foundations of Mathematics, Vol. II, Oxford, Clarendon Press, 1996, pp. 1096–1105.

11. Hilbert, David, “Logic and the Knowledge of Nature”, in W. Ewald (ed.), From Kant to Hilbert. A Source Book in the Foundations of Mathematics, Vol. II, Oxford, Clarendon Press, 1996, pp. 1157–1165.

12. Hilbert, David, “On the Infinite”, in P. Benacerraf and H. Putnam (eds.), Philosophy of Mathematics: Selected Readings, 2nd ed., Cambridge, Cambridge University Press, 1983, pp. 198–199.

13. Hilbert, David, “The Logical Foundations of Mathematics”, in W. Ewald (ed.), From Kant to Hilbert. A Source Book in the Foundations of Mathematics, Vol. II, Oxford, Clarendon Press, 1996, pp. 1134–1148.

14. Kant, Immanuel, Critique of Pure Reason, P. Guyer and A. W. Wood (eds.), Cambridge, Cambridge University Press, 1998.

15. Kant, Immanuel, “Inquiry Concerning the Distinctness of the Principles of Natural Theology and Morality”, in D. Walford and R. Meerbote (eds.), Theoretical Philosophy, 1755–1770, Cambridge, Cambridge University Press, 2000.

16. Kant, Immanuel, Metaphysical Foundations of Natural Science, M. Friedman (ed.), Cambridge, Cambridge University Press, 2004.

17. Kant, Immanuel, Prolegomena to Any Future Metaphysics That Will Be Able to Present Itself as a Science, P. G. Lucas (ed.), Manchester, Manchester University Press, 1953.

18. Kreisel, Georg, “Foundations of Intuitionistic Logic”, in E. Nagel, P. Suppes and A. Tarski (eds.), Logic, Methodology and Philosophy of Science, Stanford, Stanford University Press, 1962, pp. 198–210.

19. Lewis, David, On the Plurality of Worlds, Oxford, Basil Blackwell, 1986.

20. MacFarlane, John G., What does it mean to say that Logic is Formal?, PhD Thesis, Pittsburgh, University of Pittsburgh, 2000.

21. Mancosu, Paolo, The Adventure of Reason: Interplay between Philosophy of Mathematics and Mathematical Logic, 1900-1940, Oxford, Oxford University Press, 2010.

22. Martin-Löf, Per, “The Hilbert-Brouwer Controversy Resolved?”, in M. Schirn (ed.), The Philosophy of Mathematics Today, Oxford, Clarendon Press, 1998, pp. 243–256.

23. Posy, Carl J., Mathematical Intuitionism, Cambridge, Cambridge University Press, 2020.

24. Russell, Bertrand, The Principles of Mathematics, London, Bradford & Dickens, 1942.

25. Shapiro, Stewart (ed.), Intensional Mathematics. Studies in Logic and the Foundations of Mathematics, Vol. 113, Amsterdam, Elsevier Science Publishers B.V., 1985.

26. The Univalent Foundations Program, Homotopy Type Theory: Univalent Foundations of Mathematics, Princeton, Institute for Advanced Study, 2013.

27. Troelstra, A. Sjerp, “Axioms for Intuitionistic Mathematics Incompatible with Classical Logic”, in R. E. Butts and J. Hintikka (eds.), Logic, Foundations of Mathematics, and Computability Theory, Dordrecht, D. Reidel Publishing Company, 1977, pp. 59-86.

28. Troelstra, A. Sjerp, and van Dalen, Dirk, Constructivism in Mathematics: An Introduction, Vol. I, Amsterdam, Elsevier Science Publishers B.V., 1988.

29. Țurlea, Marin, Filosofia Matematicii, București, Editura Universității din București, 2002.

30. van Atten, Mark, On Brouwer, Belmont, Wadsworth Philosophers Series, 2004.

31. Weyl, Hermann, “On the New Foundational Crisis of Mathematics”, in P. Mancosu (ed.), From Brouwer to Hilbert. The Debate on the Foundations of Mathematics in the 1920s, New York, Oxford University Press, 1998, pp. 86–118.

32. Zermelo, Ernst, “Untersuchungen über die Grundlagen der Mengenlehre I”, in Mathematische Annalen, 65 / 1908, B. G. Teubner, pp. 261–281.

Downloads

Published

2025-12-30

How to Cite

FEDEROVICI, S.-C. (2025). Brouwer–Hilbert on the Limits of Mathematical Knowledge. Studia Universitatis Babeș-Bolyai Philosophia, 70(Special Issue), 27–46. https://doi.org/10.24193/subbphil.2025.sp.iss.02

Similar Articles

<< < 7 8 9 10 11 12 13 14 15 16 > >> 

You may also start an advanced similarity search for this article.