Characterization and stability of essential pseudospectra by measure of polynomially inessential operators

Authors

DOI:

https://doi.org/10.24193/subbmath.2025.4.11

Keywords:

Pseudospectrum, essential pseudospectrum, inessential operators, polynomially inessential operators, Fredholm operators, spectral perturbations

Abstract

 

In this article, we investigate the essential pseudospectra through the framework of polynomially inessential operators, which extends the class of polynomially strictly singular operators and provides a broader setting for Fredholm-type perturbations. We establish new results on the behavior of the essential pseudospectrum of closed linear operators on Banach spaces under perturbations by polynomially inessential operators. Moreover, we apply these results to study the influence of such perturbations on the left (resp. right) Weyl essential pseudospectra and the left (resp. right) Fredholm essential pseudospectra. In addition, we give a description of the essential pseudospectrum of the sum of two bounded linear operators. Finally, an application is provided to characterize the pseudo left (resp. right) Fredholm spectra of 2 × 2 block operator matrices.

Mathematics Subject Classification (2010): 47A10, 47A53, 47B06, 47A11.

Received 03 December 2024; Accepted 08 October 2025.

References

[1] Abramovich, Y. A., Aliprantis, C. D., An Invitation to Operator Theory, American Mathematical Society, 2002.

[2] Abdmouleh, F., Ammar, A., Jeribi, A., A characterization of the pseudo-Browder essential spectra of linear operators and application to a transport equation, J. Comput. Theor. Transp., 44(3)(2015), 141–153.

[3] Abdmouleh, F., Elgabeur, B., Pseudo essential spectra in Banach space and application to operator matrices, Acta Appl. Math., 178(2022), 1–17.

[4] Abdmouleh, F., Elgabeur, B., On the pseudo semi-Browder essential spectra and application to 2 × 2 block operator matrices, Filomat, 37(19)(2023), 6373–6386.

[5] Ammar, A., Boukettaya, B., Jeribi, A., A note on the essential pseudospectra and ap- plication, Linear Multilinear Algebra, 64(8)(2016), 1474–1483.

[6] Ammar, A., Jeribi, A., Mahfoudhi, K., Browder essential approximate pseudospectrum and defect pseudospectrum on a Banach space, Extracta Math., 34(1)(2019), 29–40.

[7] Bessaga, C., Pelczynski, A., On strictly singular and strictly cosingular operators, Acta Math.

[8] Charfi, S., Elleuch, A., Walha, I., Spectral theory involving the concept of quasi-compact perturbations, Mediterr. J. Math., 17(2020), No. 32.

[9] Davies, E. B., Spectral Theory and Differential Operators, Cambridge University Press, Cambridge, vol. 42 of Cambridge Studies in Advanced Mathematics, 1995.

[10] Dehici, A., Boussetila, N., Properties of polynomially Riesz operators on some Banach spaces, Lobachevskii J. Math., 32(1)(2011), 39–47.

[11] Elgabeur, B., A characterization of essential pseudospectra involving polynomially compact operators, Filomat, 38(2024), 11675–11691.

[12] Elgabeur, B., A New Approach of Essential Pseudo Spectrum in Banach Space and Application to Transport Equation, Bol. Soc. Paran. Mat., 43(2025), 1–14.

[13] Gohberg, I. C., Markus, A., Feldman, I. A., Normally solvable operators and ideals associated with them, Amer. Math. Soc. Transl., 2(61)(1967), 63–84.

[14] Goldberg, S., Unbounded linear operators: Theory and Applications, McGraw-Hill New York, 1966.

[15] Gonz´alez, M., Onieva, M. O., On Atkinson operators in locally convex spaces, Math. Z., 190(1985), 505–517.

[16] Gustafson, K., Weidmann, J., On the essential spectrum, J. Math. Anal. Appl., 25(6)(1969), 121–127.

[17] Hinrichsen, D., Pritchard, A. J., Robust stability of linear evolution operators on Banach spaces, SIAM J. Control Optim., 32(6)(1994), 1503–1541.

[18] Jeribi, A., Moalla, N., Yengui, S., Some results on perturbation theory of matrix operators, M-essential spectra and application to an example of transport operators, J. Math. Appl., 44(2021).

[19] Kato, T., Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1966.

[20] Landau, H. J., On Szego’s eigenvalue distribution theorem and non-Hermitian kernels, J. Anal. Math., 28(1975), 335–357.

[21] Lindenstrauss, J., Tzafriri, L., Classical Banach Spaces I, Springer-Verlag, Berlin, 1977.

[22] Müller, V., Spectral Theory of Linear Operators and Spectral Systems in Banach Algebras, Operator Theory: Advances and Applications, vol. 139, Birkhäuser, Basel, 2003.

[23] Pietsch, A., Operator Ideals, North-Holland, Amsterdam, 1980.

[24] Rakocevic, V., Approximate point spectrum and commuting compact perturbations, Glasg. Math. J., 28(2)(1986), 193–198.

[25] Schmoeger, M., The spectral mapping theorem for the essential approximate point spectrum, Colloq. Math., 74(2)(1997), 167–176.

[26] Schechter, M., Principles of Functional Analysis, 2nd ed., Graduate Studies in Mathematics, vol. 36, American Mathematical Society, Providence, RI, 2002.

[27] Trefethen, L. N., Embree, M., Spectra and Pseudospectra of Linear Operators, Princeton University Press, 2005.

[28] Trefethen, L. N., Pseudospectra of linear operators, SIAM Rev., 39(3)(1997), 383–406.

[29] Varah, J. M., The computation of bounds for the invariant subspaces of a general matrix operator, Ph.D. Thesis, Computer Science Department, Stanford University, 1967.

[30] Zivkovic-Zlatanovic, S. C., Djordjevic, D. S., Harte, R. E., Left-right Browder and left-right Fredholm operators, Integral Equations Operator Theory, 69(2011), 347–363.

[31] Zivkovic-Zlatanovic, S. C., Djordjevic, D. S., Harte, R. E., On left and right Browder operators, J. Korean Math. Soc., 48(5)(2011), 1053–1063.

Downloads

Published

2025-12-09

How to Cite

ELGABEUR, B. (2025). Characterization and stability of essential pseudospectra by measure of polynomially inessential operators. Studia Universitatis Babeș-Bolyai Mathematica, 70(4), 685–708. https://doi.org/10.24193/subbmath.2025.4.11

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.