On some univalence criteria for certain integral operators
DOI:
https://doi.org/10.24193/subbmath.2025.4.04Keywords:
Analytic functions, integral operators, univalence criteria, Schwarz LemmaAbstract
For analytic functions in the open unit disk, we define new general integral operators. The aim of this paper is to study these new operators and related univalence criteria. First of all, we recall some classes of functions defined on the unit disk. We will use functions from these classes to construct our integral operators. Secondly, we recall the univalence criteria that we use in the proofs of our results. Finally, we use the univalence criteria to establish univalence conditions related to our general integral operators.
Mathematics Subject Classification (2010): 30C45.
Received 19 March 2025; Accepted 07 October 2025.
References
[1] Ahlfors, L.V., Sufficient conditions for quasiconformal extension, Ann. of Math. Stud., 79(1974), 23-29.
[2] Andrei, L., Breaz, D., Bucur, R., Properties of a New Integral Operator, An. Științ. Univ. Ovidius Constanța Ser. Mat. 24(2)(2016), 127-136.
[3] Andrei, L., Breaz, D., Bucur, R., Some results of a new integral operator, J. Computational Analysis and Applications, 21(6)(2016), 1017-1023.
[4] Becker, J., Lownersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, J. Reine Angew. Math., 255(1972), 23-42.
[5] Deniz, E., Kanaz, S., Orhan, H., Univalence Criteria and Quasiconformal Extension of a General Integral Operator, Ukrainian. Math. J., 74(2022), 27-39.
[6] Deniz, E., Orhan, H., Srivastava, H.M., Some general univalence criteria for a family of integral operators., Appl. Math. Comput., 215(2010), 3696-3701.
[7] Frasin, B.A., Jahangiri, J.M., A new and comprehensive class of analytic functions., Anal. Univ. Oradea Fasc. Math., 15(2008), 59-62.
[8] Graham, I., Kohr, G., Geometric Function Theory in One and Higher Dimensions., Marcel Dekker Inc., New York, 2003.
[9] Kohr, G., Basic Topics in Holomorphic Functions of Several Complex Variables., Cluj University Press, Cluj-Napoca, 2003.
[10] Kohr, G., Mocanu, P.T., Special Chapters of Complex Analysis (in Romanian), Cluj University Press, Cluj-Napoca, 2005.
[11] Liu, J., Yang, D., On a class of univalent functions, Int. J. Math. Math. Sci., 22(3)(1990), 605-610.
[12] Miller, S.S., Mocanu, P.T., Differential Subordinations, Theory and Applications, Mono- graphs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, 225(2000).
[13] Nehari, Z., Conformal Mapping, Dover Publications Inc., New York, (1975).
[14] Nunokawa, M., Ozaki, S., The Schwarzian derivative and univalent functions, Proc. Amer. Math. Soc., 33(2)(1972), 392-394.
[15] Pascu, N.N., On the univalence criterion of Becker, Mathematica Cluj-Napoca, 29(52)(2)(1987), 175-176.
[16] Pescar, V., A new generalization of Ahlfors’s and Becker’s criterion of univalence, Bull. Malays. Math. Sci. Soc., 19(2)(1996), 53-54.
[17] Pommerenke, Ch., Univalent Functions, Vandenhoeck & Ruprecht, Göttingen (1975).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Studia Universitatis Babeș-Bolyai Mathematica

This work is licensed under a Creative Commons Attribution 4.0 International License.