On nilpotent matrices that are unit-regular

Authors

DOI:

https://doi.org/10.24193/subbmath.2025.4.02

Keywords:

von Neumann regular, nilpotent, matrix, Bezout domain, exchange ring, shift matrix, block diagonal matrix

Abstract

In this paper, we characterize regular nilpotent 2 × 2 matrices over Bézout domains and prove that they are unit-regular. We also demonstrate that nilpotent n × n matrices over division rings are unit-regular.

Mathematics Subject Classification (2010): 15B99, 15B33, 16U10, 16U90. 

Received 13 August 2025; Accepted 02 October 2025.

References

[1] Ara P. Strongly π-regular rings have stable range one. Proc. A. M. S. 124(11)(1996), 3293-3298.

[2] Călugăreanu, G., Zhou, Y., Rings with fine nilpotents. Annali dell Universita di Ferrara 67(2021), 231-241.

[3] Khurana, D., Unit-regularity of regular nilpotent elements. Algebra Represent Theory 19(2016), 641-644.

[4] Nicholson, W.K., Lifting idempotents and exchange rings. Trans. Amer. Math. Soc. 229(1977), 69-278.

Downloads

Published

2025-12-09

How to Cite

CĂLUGĂREANU, G. (2025). On nilpotent matrices that are unit-regular. Studia Universitatis Babeș-Bolyai Mathematica, 70(4), 567–572. https://doi.org/10.24193/subbmath.2025.4.02

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 > >> 

You may also start an advanced similarity search for this article.