Depth and sdepth of powers of the path ideal of a cycle graph. II
DOI:
https://doi.org/10.24193/subbmath.2025.4.01Keywords:
Stanley depth, depth, monomial ideal, cycle graphAbstract
Let Jn,m := (x1x2 · · · xm, x2x3 · · · xm+1, . . . , xn−m+1 · · · xn, xn−m+2 · · · xnx1, . . . , xnx1 · · · xm−1) be the m-path ideal of the cycle graph of length n, in the ring of polynomials S = K[x1, . . . , xn]. As a continuation of our previous paper, we prove several new results regarding depth(S/J t and sdepth(S/J t ), where t ≥ 1.
Mathematics Subject Classification (2010): 13C15, 13P10, 13F20.
Received 01 May 2025; Accepted 01 October 2025.
References
[1] Bălănescu, S., Cimpoeaș, M., Depth and Stanley depth of powers of the path ideal of a path graph, to appear in Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 86(2024), no. 4, 65-76.
[2] Bălănescu, S., Cimpoeaș, M., Depth and Stanley depth of powers of the path ideal of a cycle graph, Rev. Un. Mat. Argentina 68(2025), no. 2, 677-690.
[3] Cimpoeaș, M., Stanley depth of monomial ideals with small number of generators, Cent. Eur. J. Math., 7(2009), no. 4, 629-634.
[4] Cimpoeaș, M., Several inequalities regarding Stanley depth, Rom. J. Math. Comput. Sci., 2(2012), no. 1, 28-40.
[5] Cimpoea¸s, M., On the Stanley depth of powers of some classes of monomial ideals, Bull. Iranian Math. Soc., 44(2018), no. 3, 739-747.
[6] Conca, A., De Negri, E., M-sequences, graph ideals and ladder ideals of linear types, J. Algebra, 211(1999), no. 2, 599-624.
[7] CoCoATeam, CoCoA: a system for doing Computations in Commutative Algebra, Avail- able at http://cocoa.dima.unige.it
[8] Duval, A. M., Goeckneker, B., Klivans, C. J., Martine, J. L. A non-partitionable Cohen- Macaulay simplicial complex, Adv. Math., 299(2016), 381-395.
[9] Herzog, J., Vladoiu, M., Zheng, X., How to compute the Stanley depth of a monomial ideal, J. Algebra, 322(2009), no. 9, 3151-3169.
[10] Rauf, A. Depth and sdepth of multigraded module, Comm. Algebra, 38(2010), no. 2, 773-784.
[11] Stanley, R. P. Linear Diophantine equations and local cohomology, Invent. Math., 68(1982), 175-193.
[12] Villarreal, R. H. Monomial algebras. Second edition, Monographs and Textbooks in Pure and Applied Mathematics, Chapman & Hall, New York, 2018.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Studia Universitatis Babeș-Bolyai Mathematica

This work is licensed under a Creative Commons Attribution 4.0 International License.