Depth and sdepth of powers of the path ideal of a cycle graph. II

Authors

  • Silviu BĂLĂNESCU Faculty of Applied Sciences, National University of Science and Technology Politehnica Bucharest, Romania. Email: silviu.balanescu@stud.fsa.upb.ro https://orcid.org/0000-0002-7774-9883
  • Mircea CIMPOEAȘ Faculty of Applied Sciences, National University of Science and Technology Politehnica Bucharest, Simion Stoilow Institute of Mathematics, Research Unit 5, Bucharest, Romania. Email: mircea.cimpoeas@imar.ro https://orcid.org/0000-0002-7774-9883

DOI:

https://doi.org/10.24193/subbmath.2025.4.01

Keywords:

Stanley depth, depth, monomial ideal, cycle graph

Abstract

Let Jn,m := (x1x2 · · · xm, x2x3 · · · xm+1, . . . , xn−m+1 · · · xn, xn−m+2 · · · xnx1, . . . , xnx1 · · · xm−1) be the m-path ideal of the cycle graph of length n, in the ring of polynomials S = K[x1, . . . , xn]. As a continuation of our previous paper,  we prove several new results regarding depth(S/J t and sdepth(S/J t ), where t ≥ 1.

Mathematics Subject Classification (2010): 13C15, 13P10, 13F20.

Received 01 May 2025; Accepted 01 October 2025.

References

[1] Bălănescu, S., Cimpoeaș, M., Depth and Stanley depth of powers of the path ideal of a path graph, to appear in Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 86(2024), no. 4, 65-76.

[2] Bălănescu, S., Cimpoeaș, M., Depth and Stanley depth of powers of the path ideal of a cycle graph, Rev. Un. Mat. Argentina 68(2025), no. 2, 677-690.

[3] Cimpoeaș, M., Stanley depth of monomial ideals with small number of generators, Cent. Eur. J. Math., 7(2009), no. 4, 629-634.

[4] Cimpoeaș, M., Several inequalities regarding Stanley depth, Rom. J. Math. Comput. Sci., 2(2012), no. 1, 28-40.

[5] Cimpoea¸s, M., On the Stanley depth of powers of some classes of monomial ideals, Bull. Iranian Math. Soc., 44(2018), no. 3, 739-747.

[6] Conca, A., De Negri, E., M-sequences, graph ideals and ladder ideals of linear types, J. Algebra, 211(1999), no. 2, 599-624.

[7] CoCoATeam, CoCoA: a system for doing Computations in Commutative Algebra, Avail- able at http://cocoa.dima.unige.it

[8] Duval, A. M., Goeckneker, B., Klivans, C. J., Martine, J. L. A non-partitionable Cohen- Macaulay simplicial complex, Adv. Math., 299(2016), 381-395.

[9] Herzog, J., Vladoiu, M., Zheng, X., How to compute the Stanley depth of a monomial ideal, J. Algebra, 322(2009), no. 9, 3151-3169.

[10] Rauf, A. Depth and sdepth of multigraded module, Comm. Algebra, 38(2010), no. 2, 773-784.

[11] Stanley, R. P. Linear Diophantine equations and local cohomology, Invent. Math., 68(1982), 175-193.

[12] Villarreal, R. H. Monomial algebras. Second edition, Monographs and Textbooks in Pure and Applied Mathematics, Chapman & Hall, New York, 2018.

Downloads

Published

2025-12-09

How to Cite

BĂLĂNESCU, S., & CIMPOEAȘ, M. (2025). Depth and sdepth of powers of the path ideal of a cycle graph. II. Studia Universitatis Babeș-Bolyai Mathematica, 70(4), 555–566. https://doi.org/10.24193/subbmath.2025.4.01

Issue

Section

Articles

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.