Threshold results of blow-up solutions to Kirchhoff equations with variable sources

Authors

DOI:

https://doi.org/10.24193/subbmath.2025.3.09

Keywords:

Kirchhoff, potential well method, arbitrary initial energy, blow-up, bounds of the blow-up time, Lp(.)(Ω) Sobolev space

Abstract

This paper analyzes an initial boundary value problem for variable source Kirchhoff-type parabolic equations. We aim to derive a new sub-critical energy threshold for finite-time blow-up, a new blow-up condition, and estimates for lifespan and upper bounds for blow-up time across various initial energy cases.

Mathematics Subject Classification (2010): 35B40, 35B44, 35K55

Received 17 February 2025; Accepted 01 June 2025.

References

Abita, R. Global existence and uniqueness for viscoelastic equations with nonstandard growth conditions. Stud. Univ. Babeş-Bolyai Math. 69(2024), No. 2, 425-443.

Aboulaicha, R., Meskinea, D., Souissia, A. New diffusion models in image processing. Comput. Math. Appl., 56(2008), 874-882.

Acerbi, E., Mingione, G. Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal., 164(2002), 213–259.

Antontsev, S., Rodrigues, J.F. On stationary thermo-rheological viscous flows. Ann. Univ. Ferrara, Sez. VII Sci. Mat. 52(2006), 19–36.

Antontsev, S., Shmarev, S. Blow-up of solutions to parabolic equations with nonstandard growth conditions. J. Comput. Appl. Math., 234(9)(2010), 2633-2645.

Antontsev, S., Zhikov, V. Higher integrability for parabolic equations of p(x,t)-Laplacian type. Adv. Differ. Equ., 10(9), (2005), 1053-1080.

Autuori, G., Pucci, P., Salvatori, M. Global nonexistence for nonlinear Kirchhoff systems, Arch. Ration. Mech. Anal. 196(2)(2010), 489-516.

Benkouider, S., Rahmoune, A. Blow-up time analysis of parabolic equations with variable nonlinearities, Applicable Analysis, (2022).

Chen, Y., Levine, S., Rao, M. Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math., 66(2006), 1383–1406.

D'Ancona, P., Shibata, Y. On global solvability of non-linear viscoelastic equation in the analytic category, Math. Methods Appl. Sci., 17(1994), 477-489.

D'Ancona, P., Spagnolo, S. Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math., 108(1992), 247-262.

Diening, L., Harjulehto, P., Hästö, P., Ruzicka, M. Lebesgue and Sobolev spaces with variable exponents, Springer, 2011.

Fan, X., Shen, J., Zhao, D. Sobolev embedding theorems for spaces Wk,p(x) (Ω). J. Math. Anal. Appl., 262(2001), 749-760.

Han, Y., Li, Q. Threshold results for the existence of global and blow-up solutions to Kirchhoff equations with arbitrary initial energy. Comput. Math. Appl., 75(9), (2018), 3283-3297.

Han, Y., Gao, W., Sun, Z., Li, H. Upper and lower bounds of blow-up time to a parabolic type Kirchhoff equation with arbitrary initial energy. Comput. Math. Appl., 76(10)(2018), 2477-2483.

Iesan, D. A theory of thermoelastic materials with voids. Acta Mech 60(1–2)(1986), 67–89.

Iesan, D. Thermoelastic models of continua. Dordrecht: Springer, 2004.

Iesan, D., Quintanilla, R. A theory of porous thermoviscoelastic mixtures. J. Therm. Stress 30(7)(2007), 693–714.

Kirchhoff, G. Vorlesungen über Mechanik. Teubner, Leipzig, 1883.

Pavol, Q., Philippe, S., Superlinear. Parabolic Problems, Blow-up, Global Existence and Steady States, Springer Nature Switzerland AG 2007, 2019.

Kbiri, A.M., Messaoudi, S.A., Khenous, H.B. A blow-up result for nonlinear generalized heat equation, Comput. Math. Appl. 68(12)(2014), 1723–1732.

Levine, S., Chen, Y., Stanich, J. Image restoration via nonstandard diffusion. Technical Report 04-01, Dept. of Mathematics and Computer Science, Duquesne University, 2004.

Lions, J.L. On some questions in boundary value problems of mathematical physics, in: Contemporary Developments in Continuum Mechanics and Partial Differential Equations (Proceedings of International Symposium, Inst. Mat., Univ. Fed. Rio de Janeiro, Rio de Janeiro, 1977), in: North-Holland Mathematical Studies, North-Holland, Amsterdam, 30(1978), 284–346.

Nishihara, K. On a global solution of some quasilinear hyperbolic equation, Tokyo J. Math., 7(1984), 437-459.

Junior, D.S.A., Ramos, A.J.A., Freitas, M.M., Dos Santos, M.J., Arwadi, T.E. Polynomial stability for the equations of porous elasticity in one-dimensional bounded domains. Math. Mech. Solids 27(2)(2022), 308–318.

Narasimha, R. Non-Linear vibration of an elastic string. J. Sound Vib., 8(1968), 134–146.

Pinasco, J.P. Blow-up for parabolic and hyperbolic problems with variable exponents, Nonlinear Anal. 71(2009), 1094–1099.

Rajagopal, K., Růžička, M. Mathematical modelling of electro-rheological fluids. Contin. Mech. Thermodyn. 13(2001), 59–78.

Růžička, M. Electrorheological Fluids: Modeling and Mathematical Theory. Lecture Notes in Mathematics, vol. 1748, Springer, Berlin, 2000.

Santos, M.L., Campelo, A.D.S., Almeida Junior, D.S. Rates of decay for porous elastic system weakly dissipative. Acta Appl. Math. 151(2017), 1–16.

Sattinger, D.H. On global solution of nonlinear hyperbolic equations. Arch. Ration. Mech. Anal., 30(2)(1968), 148–172.

Liu, Y., Zhao, J. On potential wells and applications to semilinear hyperbolic equations and parabolic equations. Nonlinear Anal., 64(12)(2006), 2665-2687.

Zhu, Y., Zabaras, N., Koutsourelakis, P.S., Perdikaris, P. Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. J. Comput. Phys., 39(2019), 4, 56-81.

Downloads

Published

2025-09-12

How to Cite

TOUIL, N., & RAHMOUNE, A. (2025). Threshold results of blow-up solutions to Kirchhoff equations with variable sources. Studia Universitatis Babeș-Bolyai Mathematica, 70(3), 503–526. https://doi.org/10.24193/subbmath.2025.3.09

Issue

Section

Articles

Similar Articles

<< < 6 7 8 9 10 11 12 13 14 15 > >> 

You may also start an advanced similarity search for this article.