Global well-posedness for the generalized Keller-Segel system in critical Besov-Morrey spaces with variable exponent

Authors

DOI:

https://doi.org/10.24193/subbmath.2025.3.08

Keywords:

Homogeneous variable exponent Besov-Morrey spaces, generalized Keller-Segel system, global well-posedness

Abstract

This article is devoted to studying the generalized Keller-Segel system (GKS) in homogeneous variable exponent Besov-Morrey spaces. By making use of the Littlewood-Paley theory and the Chemin mono-norm methods, we obtain, when 1/2< β ≤ 1, a global well-posedness result for GKS system with small initial data in the critical variable exponent Besov-Morrey spaces N_{r(·),q(·),h}^{-2β+ n/q(·)}(R^n) with 1 ≤ r(·) ≤ q(·) < ∞, 1 ≤ h ≤ ∞. In the limit case β = 1/2 , we show the global well-posedness for small initial data in N_{r(·),q(·),1}^{-1+ n/q(·)}(R^n) with 1 ≤ r(·) ≤ q(·) < ∞.

Mathematics Subject Classification (2010): 35A01, 35R11, 58J35, 42B25.

Received 24 February 2025; Accepted 11 April 2025.

References

Abidin, M. Z., Chen, J., Global well-posedness for fractional Navier-Stokes equations in variable exponent Fourier-Besov-Morrey spaces, Acta Mathematica Scientia, 41(2021), 164-176.

Almeida, A., Caetano, A., Variable exponent Besov-Morrey spaces, Journal of Fourier Analysis and Applications, 26(2020), no. 1, 5.

Almeida, A., Hästö, P., Besov spaces with variable smoothness and integrability, Journal of Functional Analysis, 258(2010), no. 5, 1628-1655.

Ammi, M. R. S., Dahi, I., Generalization of Poincare inequality in a Sobolev Space with exponent constant to the case of Sobolev space with a variable exponent, General Letters in Mathematics, 10(2021), no. 2, 31-37.

Bahouri, H., Chemin, J.-Y., Danchin R., Fourier Analysis and Nonlinear Partial Differential Equations, (Vol. 343, pp. 523-pages), Berlin; Springer 2011.

Biler, P., Hilhorst, D., Nadzieja, T., Existence and nonexistence of solutions for a model of gravitational interaction of particles, II, In Colloquium Mathematicum, 67(1994), No. 2, 297-308. Polska Akademia Nauk. Instytut Matematyczny PAN.

Bony, J. M., Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. école Norm. Sup. 14(1981), no. 4 209-246.

Butakın, G., Pişkin, E., Blow up of solutions for a fourth-order reaction-diffusion equation in variable-exponent Sobolev spaces, Filomat, 38(2024), no. 23, 8225-8242.

Butakın, G., Pişkin, E., Çelik, E., Blowup and Global Solutions of a Fourth-Order Parabolic Equation With Variable Exponent Logarithmic Nonlinearity, Journal of Function Spaces, 2024(2024), no. 1, 2847533.

Chems Eddine, N., Ragusa, M.A., Repovš, D.D., On the concentration-compactness principle for anisotropic variable exponent Sobolev spaces and its applications, Fract. Calc. Appl. Anal. 27(2024), no. 2, 725–756.

Escudero, C., The fractional Keller-Segel model, Nonlinearity, 19(2006), 2909-2918.

El Idrissi, A., El Boukari, B., El Ghordaf, J.: Local and global well-posedness for fractional porous medium equation in critical Fourier-Besov spaces. Boletim da Sociedade Paranaense de Matemática 24(2024), 1-12.

El Idrissi, A., El Boukari, B., El Ghordaf, J.: Global well-posedness for the 3D rotating fractional Boussinesq equations in Fourier-Besov-Morrey spaces with variable exponent. Filomat 38(21), (2024), 7597-7608.

El Idrissi, A., Srhiri, H., El Boukari, B., El Ghordaf, J., Global existence and Gevrey analyticity of the Debye-Hückel system in critical Besov-Morrey spaces, Rendiconti del Circolo Matematico di Palermo Series 2, 74(2025), no. 1, 1-20.

Gordadze, E., Meskhi, A., Ragusa, M. A., On some extrapolation in generalized grand Morrey spaces with applications to PDEs, Electron. Res. Arch. 32(2024), no. 1, 551–564.

Iwabuchi, T., Global well-posedness for Keller-Segel system in Besov type spaces, Journal of Mathematical Analysis and Applications, 379(2011), no. 2 930-948.

Keller, E. F., Segel, L. A., Initiation of slime mold aggregation viewed as an instability, Journal of theoretical biology, 26(1970), no. 3, 399-415.

Nogayama, T., Sawano, Y., Local and global solvability for Keller-Segel system in Besov-Morrey spaces, Journal of Mathematical Analysis and Applications, 516(2022), no. 1 126508.

Ouidirne, F., Srhiri, H., Allalou, C., Oukessou, M., Global Existence for the 3-D Generalized Micropolar Fluid System in Critical Fourier-Besov Spaces with Variable Exponent, Nonlinear Dyn. Syst. Theory, 23(2023), no. 3, 338-347.

Ruzicka, M., Electrorheological Fluids: Modeling and Mathematical Theory, Springer Science & Business Media, Berlin/Heidelberg, Germany, 2000.

Zhao, J., Well-posedness and Gevrey analyticity of the generalized Keller-Segel system in critical Besov spaces, Annali di Matematica Pura ed Applicata (1923-), 197(2018), 521-548.

Downloads

Published

2025-09-12

How to Cite

EL IDRISSI, A., OUIDIRNE, F., EL BOUKARI, B., & EL GHORDAF, J. (2025). Global well-posedness for the generalized Keller-Segel system in critical Besov-Morrey spaces with variable exponent. Studia Universitatis Babeș-Bolyai Mathematica, 70(3), 485–502. https://doi.org/10.24193/subbmath.2025.3.08

Issue

Section

Articles

Similar Articles

<< < 17 18 19 20 21 22 23 24 > >> 

You may also start an advanced similarity search for this article.