On the coefficient estimates for a subclass of m-fold symmetric bi-univalent functions

Authors

DOI:

https://doi.org/10.24193/subbmath.2025.3.04

Keywords:

Analytic functions, bi-univalent functions, coefficient estimates, m-fold symmetric bi-univalent functions

Abstract

In this work, we introduce and investigate a subclass of analytic and bi-univalent functions when both f and f-1 are m-fold symmetric in the open unit disk U. The results presented in this paper would generalize and improve those that were given in several recent works.

Mathematics Subject Classification (2010): 30C45, 30C50.

Received 12 November 2024; Accepted 31 May 2025.

References

Altinkaya, S¸., Yal¸cin, S., Coefficient bounds for certain subclasses of mfold symmetric bi-univalent functions, Journal of mathematics, Article ID 241683(2015), 1-5.

Brannan, D. A., Clunie, J. G., (Eds.), Aspects of Contemporary Complex Analysis Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1-20, 1979, (Academic Press, New York and London, 1980).

Brannan, D. A., Taha, T. S., On Some classes of bi-univalent functions, Stud.Univ. Babes-Bolyai Math., 31(1986), no. 2, 70-77.

Duren, P. L., Univalent Functions, Springer-Verlag, New York, Berlin, 1983.

Frasin, B. A., Aouf, M. K., New subclasses of bi-univalent functions, Appl. Math. Lett. 24(2011), no. 9, 1569-1573.

Hayami, T., Owa, S., Coefficient bounds for bi-univalent functions, PanAmer Math. J. 22(2012), no. 4, 15-26.

Kedzierawski, A. W., Some remarks on bi-univalent functions, Ann. Univ. Mariae Curie-Sklodowska Sect. A. 39 (1985), 77-81.

Lewin, M., On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967) 63-68.

Li , X. F., Wang, A. P., Two new subclasses of bi-univalent functions, International Mathematical Forum. 7(2012), no. 30, 1495-1504.

Motamednezhad, A., Salehian, S., Magesh, N., Coefficient estimates for subclass of m-fold symmetric bi-univalent functions, Kragujevac Journal of Mathematics. 46(2022), no. 3, 395-406.

Srivastava, H. M., Gaboury, S., Ghanim, F., Coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Univ. Apulensis Math. Inform. 41 (2015), 153-164.

Srivastava, H. M., Gaboury, S., Ghanim, F., Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Math. Sci. Ser. B Engl. Ed. 36 (2016), 863-871.

Srivastava, H. M., Sivasubramanian, S., Sivakumar, R., Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Math. J. 7(2014), no. 2, 1-10.

Tan, D. L., Coefficient estimates for bi-univalent functions, Chinese Ann.Math. Ser. A. 5(1984), no. 5, 559-568.

Wanas, A. K., Pall-Szabo, A. O., Coefficient bounds for new subclasses of analytic and m-fold symmetric bi-univalent functions, Babes-Bolyai Math. (2021) no. 4, 659-666.

Xu, Q. H., Gui, Y. C., Srivastava, H. M., Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25(2012), no. 6, 990-994.

Xu, Q. H., Xiao, H. G., Srivastava, H. M., A certain general subclass of analytic and bi-univalent functions and associated coefficient estimate problems, Appl. Math. Comput. 218(2012), no. 23, 11461-11465.

Downloads

Published

2025-09-12

How to Cite

HOSSEINI, S. H., MOTAMEDNEZHAD, A., SALEHIAN, S., & PÁLL-SZABÓ, Ágnes O. (2025). On the coefficient estimates for a subclass of m-fold symmetric bi-univalent functions. Studia Universitatis Babeș-Bolyai Mathematica, 70(3), 427–440. https://doi.org/10.24193/subbmath.2025.3.04

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.