Application of Riemann-Liouville fractional integral to fuzzy differential subordination of analytic univalent functions

Authors

DOI:

https://doi.org/10.24193/subbmath.2025.3.03

Keywords:

Univalent function, differential subordination, fuzzy differential subordination, best fuzzy dominant, Pascal operator, Catas operator, Riemann-Liouville fractional integral

Abstract

This paper focuses on geometric function theory, a subfield of complex analysis that has been adapted for fuzzy set analysis. A number of novel findings that are applicable to this class are found by applying the concept of fuzzy differential subordination. Interesting corollaries are discovered using specific functions, and an example illustrates the practical usage of the results.

Mathematics Subject Classification (2010): 30C45, 30A10.

Received 10 October 2024; Accepted 02 July 2025.

References

Alb Lupaş, A., Applications of the Fractional Calculus in Fuzzy Differential Subordinations and Superordinations, Mathematics, 9(2021), no. 20, 2601-2601.

Alb Lupaş, A., On Special Fuzzy Differential Subordinations Obtained for Riemann-Liouville Fractional Integral of Ruscheweyh and Sălăgean Operators, Axioms, 11(2022), no. 9, 428-428.

Ali, E. E., Oros, G. I., El-Ashwah, R. M., Albalahi, A. M., Applications of fuzzy differential subordination theory on analytic p-valent functions connected with q-calculus operator, AIMS Mathematics, 9(2024), no. 8, 21239-21254.

Analouei Adegani, E., Bulboaca, T., Motamednezhad, A., Simple Sufficient Subordination Conditions for Close-to-Convexity, Mathematics, 7(2019), 3, 241-241.

Bulboaca, T., Classes of first-order differential superordinations, Demonstratio Mathematica, 35(2002), no. 2, 287-292.

Bulboaca, T., A class of superordination-preserving integral operators, Indagationes Mathematicae, 13(2002), no. 3, 301-311.

Catas A., On certain classes of p-valent functions defined by multiplier trasformations, In.Proc.Book of international symposium on geometric function theory and applications, Istanbul, Turkey, 2007, 241-250.

Cho, N. E., Aouf, M. K., Some applications of fractional calculus operators to a certain subclass of analytic functions with negative coefficients, Turkish Journal of Mathematics, 20(1996), no. 4, 553-562.

Cho, N. E., Srivastava, H. M., Analouei Adegani, E., Motamednezhad, A., Criteria for a certain class of the Carathéodory functions and their applications, J. Inequal. Appl., 85(2020), 1-14.

Dzitac, I., Filip, F. G., Manolescu, M. J., Fuzzy logic is not fuzzy: world-renowned computer scientist Lotfi A. Zadeh, International journal of computers communication & control, 12(2017), no. 6, 748-789.

El-Deeb, S.M., Oros, G.I., Fuzzy differential subordinations connected with the linear operator, Mathematica Bohemica, 146(2021), no. 4, 397-406.

Ibrahim, R. W., Darus, M., On a univalent class involving differential subordination with applications, J. Math. Statistics, 7(2011), no. 2, 137-143.

Khan, S., Ro, J. S., Tchier, F., Khan, N., Applications of fuzzy differential subordination for a new subclass of analytic functions, Axioms, 12(2023), no. 8, 745-745.

Lupas, A. A., Oros, G. I., New applications of Salagean and Ruscheweyh operators for obtaining fuzzy differential subordinations, Mathematics, 9(2021), no. 16, 2000-2000.

Lupas, A. A., Oros, G., On special fuzzy differential subordinations using Sălăgean and Ruscheweyh operators, Applied Mathematics and Computation, 261(2015), 119-127.

Lupas, A. A., A note on special fuzzy differential subordinations using generalized Salagean operator and Ruscheweyh derivative, J. Comput. Anal. Appl, 15(2013), 1476-1483.

Miller, S. S., Mocanu, P. T., Differential subordinations: theory and applications, Marcel Dekkar, Inc. New York, USA, Basel, Switzerland, 2000.

Miller, S. S., Mocanu, P. T., Differential subordinations and univalent functions, Michigan Mathematical Journal, 28(1981), no. 2, 157-172.

Miller, S. S., Mocanu, P. T., Second order differential inequalities in the complex plane, Journal of Mathematical Analysis and Applications, 65(1978), no. 2, 289-305.

Miller, S. S., Mocanu, P. T., Subordinants of differential superordinations, Complex variables, 48(2003), no. 10, 815-826.

Noor, K. I., Fuzzy differential subordination involving generalized Noor-Salagean operator, Inf. Sci. Lett, 11(2022), 1-7.

Oros, G.I., Oros, Gh., Fuzzy differential subordination, Acta Univ. Apulensis, 3, 2012, 55-64.

Oros, G.I., Oros, Gh., Dominants and best dominants in fuzzy differential subordinations, Stud. Univ. Babes-Bolyai Math, 57(2012), no. 2, 239-248.

Oros, G.I., Oros, Gh., The notion of subordination in fuzzy sets theory, General Mathematics, 19(2011), no. 4, 97-103.

Oros, G.I., Dzitac, S., Applications of subordination chains and fractional integral in fuzzy differential subordinations, Mathematics, 10(2022), no. 10, 1690-1690.

Oros, G.I., Fuzzy differential subordinations obtained using a hypergeometric integral operator, Mathematics, 9(2021), no. 20, 2539-2539.

Oros, G. I., Oros, G., Briot-Bouquet fuzzy differential subordination, An. Univ. Oradea Fasc. Mat, 19(2012), 83-87.

Shelake, G. D., Nilapgol S. K., Estimates on initial coefficient bounds of subclasses of bi-univalent functions defined by generalized differential operator, South East Asian Journal of Mathematics & Mathematical Sciences, 20(2024), no. 1, 59-70.

Shelake, G. D., Nilapgol, S. K., Initial coefficient Estimates for subclasses of Bi-univalent Functions Involving q-Derivative Operator, Ganita, 74(2024), no, 1, 151-160.

Shelake G. D., Joshi S. B., On subclass of uniformly convex functions involving certain fractional calculus operator, Indian Journal of Mathematics, 58(2016), no. 1, 43-57.

Shelake, G. D., Nilapgol, S. K., Joshi S. B., Bi-concave and Ozaki-type bi-close-to-convex functions associated with Miller Ross type Poisson distribution, Journal of Indian academy of Mathematics, 47(2025), no. 1, 113-131.

Srivastava, H. M., El-Deeb, S. M., Fuzzy differential subordinations based upon the Mittag-Leffler type Borel distribution, Symmetry, 13(2021), no. 6, 1023-1023.

Srivastava, H. M., Motamednezhad, A., Adegani, E.A., Faber Polynomial Coefficient Estimates for Bi-Univalent Functions Defined by Using Differential Subordination and a Certain Fractional Derivative Operator, Mathematics, 8(2020), no. 2, 172-172.

Thirupathi, G., Coefficient estimates for subclsses of bi-univalent functions with Pascal operator, 15(2024), no. 1, 1-9.

Wanas, A. K., Bulut, S., Some results for fractional derivative associated with fuzzy differential subordinations, Journal of Al-Qadisiyah for computer science and mathematics, 12(2020), no. 3, 27-36.

Zadeh, L. A., Fuzzy Sets, Inf. Control, 8, 1965, 338–353.

Downloads

Published

2025-09-12

How to Cite

NILAPGOL, S. K., SHELAKE, G. D., & JIRAGE, P. D. (2025). Application of Riemann-Liouville fractional integral to fuzzy differential subordination of analytic univalent functions. Studia Universitatis Babeș-Bolyai Mathematica, 70(3), 409–425. https://doi.org/10.24193/subbmath.2025.3.03

Issue

Section

Articles

Similar Articles

<< < 10 11 12 13 14 15 16 17 18 19 > >> 

You may also start an advanced similarity search for this article.