On some coefficient estimates for a class of p-valent functions
DOI:
https://doi.org/10.24193/subbmath.2025.2.03Keywords:
p-valent functions, coefficient estimates, Hankel determinantAbstract
In this paper, we consider a class of p-valent functions. For functions in this class, we find sharp estimates for their first three coefficients. Upper bound for the second order, Hankel determinant is also obtained.
Mathematics Subject Classification (2010): 30C45, 30C50.
Received 29 August 2024; Accepted 10 January 2025.
References
1. Cho, N.E., Kumar, V., Kwon, O.S., Sim, Y.J., Sharp coefficient bounds for certain p-valent functions, Bull. Math. Malays. Sci. Soc., 42(2019), 405-4016.
2. Duren, P.L., Univalent Functions, Springer, Berlin/Heidelberg, Germany; New York, NY, USA 1983.
3. Gupta, P., Nagpal, S., Ravichandran, V., Marx-Strohhäcker theorem for multivalent functions, Afr. Mat., 32(2021), 1421-1434.
4. Hayami, T., Owa, S., Hankel determinant for p-valently starlike and convex functions of order α, Gen. Math., 17(4)(2009), 29-44.
5. Krisna, D.V., Ramreddy, T., Coefficient inequality for certain subclasses of p-valent functions, Palest. J. Math., 4(1)(2015), 223-228.
6. Li, M., Sugawa, T., A note on successive coefficients of convex functions, Comput. Methods Funct. Theory, 17(2017), 179-193.
7. Libera, R.J., Złotkiewicz, E.J., Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc., 85(2)(1982), 225-230.
8. Libera, R.J., Złotkiewicz, E.J., Coefficient bounds for the inverse of a function with derivative in P, Proc. Amer. Math. Soc., 87(2)(1983), 251-257.
9. Marx, A., Unteruchungen über schlicht Abbildungen, Math. Ann., 107(1932/33), 40-67.
10. Noonan, J.W., Thomas, D.K., On the second Hankel determinant of arreally mean p- valent functions, Trans. Amer. Soc., 223(1976), 337-346.
11. Ohno, R., Sugawa, T., Coefficient estimates of analytic endomorphisms of the unit disk fixing a point with applications to concave functions, Kyoto J. Math., 58(2)(2018), 227- 241.
12. Pommerenke, Ch., On the Hankel determinants of univalent functions, Mathematika, 14(1967), 108-112.
13. Pommerenke, Ch., Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975.
14. Strohhäcker, E., Beiträge zur Theorie der schlichten Funktionen, Math. Z., 37(1933), 356-380.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Studia Universitatis Babeș-Bolyai Mathematica

This work is licensed under a Creative Commons Attribution 4.0 International License.